Simulink® Check™
User's Guide

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Check™ User's Guide
© COPYRIGHT 2004-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2017 Online only New for Version 4.0 (Release 2017b)

March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release 2019a)
September 2019 Online only Revised for Version 4.4 (Release 2019b)

March 2020 Online only Revised for Version 4.5 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Get Started

1]

Simulink Check Product Description 1-2
Key Features i i e e e 1-2
Assess and Verify Model Quality 1-3

Detect and Fix Model Advisor Check Violations 1-4
Detect and Fix Model Advisor Check Violations While You Edit 1-5
Detect and Fix Model Advisor Check Violations Interactively 1-6

Collect Model Metric Data by Using the Metrics Dashboard 1-8
Analyze MetricData 1-8
Explore MetricData 1-9
Refactor Model Based on MetricData 1-11

Detect and Fix Compliance Issues 1-12
Explore Compliance Results in the Dashboard 1-12
Update Model to Fix Compliance Issues 1-13
Rerun Model Metricst e 1-14

Refactor Models to Improve Component Reuse 1-16
Identify and Replace Clones with Links to Library Blocks 1-16
Explore Other Options i, 1-19

Simplify Model for Targeted Analysis of Complex Models using Model

Slicer Tool 1-20

Verification and Validation

2|

Test Model Against Requirements and Report Results
Requirements - Test Traceability Overview
Display the Requirements i,
Link Requirementsto Tests
Runthe Test e
Reportthe Results

SR AN CECR

Analyze a Model for Standards Compliance and Design Errors
Standards and Analysis Overviewccv v,
Check Model for Style Guideline Violations and Design Errors

[\J[:JN
N Jd

iii

iv

Contents

Perform Functional Testing and Analyze Test Coverage 2-9

Incrementally Increase Test Coverage Using Test Case Generation 2-9
Analyze Code and Test Software-in-the-Loop 2-12
Code Analysis and Testing Software-in-the-Loop Overview 2-12
Analyze Code for Defects, Metrics, and MISRA C:2012 2-12

Checking Systems Interactively

3|

Check Model Compliance by Using the Model Advisor 3-2
Model AdViSOr OVEIVIEW . . . oo vttt e e e 3-2
Run Model Advisor Checks and Review Results 3-4
Check Your Model by Using Edit Time Checks 3-6
View and Customize the Edit-Time Checks in a Model Advisor Configuration
.. 3-8
Exclude Blocks From the Model Advisor Check Analysis 3-10
Model Advisor Exclusion Overviewouiiinnnennn. 3-10
Save Model Advisor Exclusionsina Model File 3-11
Save Model Advisor Exclusions in Exclusion File 3-11
Create Model Advisor Exclusions 3-11
Review Model Advisor Exclusions 3-12
Manage EXClusions0t e 3-13
Exclude Blocks from Edit Time Checking 3-14
Limit Model Checks by Excluding Gain and Outport Blocks 3-15
Generate Model Advisor Reports 3-19
Generate Results Report When Executing Model Advisor Checks 3-19
Generate Results Report After Executing Model Advisor Checks 3-19
Modify Template for Model Advisor Check Results Report 3-19
Transform Model to Variant System 3-22
Example Model e 3-22
Perform Variant Transform on Example Model 3-23
Model Transformation Limitations 3-25
Enable Component Reuse by Using Clone Detection 3-26
Exact Clones and Similar Clonescoiiiiinnnnnnn... 3-26
Identify Exact and SimilarClones 3-26
Replace Clomes it e e e 3-30
Identifying and Replacing Clones in Model Libraries 3-31
Check the Equivalency ofthe Model 3-31
Improve Model Readability by Eliminating Local Data Store Blocks ... 3-33
Example Model 3-33
Replace Data Store Blocks 3-34
Limitationst 3-37
Improve Efficiency of Simulation by Optimizing Prelookup Operation of
Lookup Table Blocks 3-38
Example Model e 3-38

Merge Prelookup Operation 3-39

Conditions and Limitations 3-41
Model Checks for DO-178C/D0-331 Standard Compliance 3-43
Model Checks for High Integrity Systems Modeling 3-44
Model Checks for DO-254 Standard Compliance 3-50
Model Checks for High Integrity Systems Modeling 3-50
HDL Code Advisor Checks 3-53
Model Checks for MAB and JMAAB Compliance 3-56
Accessing the MAB and JMAAB Model Advisor Checks 3-56
Modeling Guidelines and Model Advisor Checks for MAB and JMAAB ... 3-56
Model Checks for High Integrity Systems Modeling 3-66
High Integrity Systems Modeling Checks 3-44
Model Checks for IEC 61508, IEC 62304, I1SO 26262, and EN 50128
Standard Compliance 3-72
Model Checks for High Integrity Systems Modeling 3-73
Model Checks for MISRA C:2012 Compliance 3-79
Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961
Standards) 3-80
Model Checks for Requirements Links 3-81

Check Systems Programmatically

4

Checking Systems Programmatically 4-2
Create a Function for Checking Multiple Systems 4-3
Create a Function for Checking Multiple Systems in Parallel 4-5
Archive and ViewResults 4-7
Archive Results 4-7
View Results in Command Windowt 4-7
View Results in Model Advisor Command-Line Summary Report 4-7
View Results in Model Advisor GUL 4-8
View Model Advisor RepoTt 4-8
Archive and View Model Advisor RunResults 4-10

Model Metrics

S|

Collect and Explore Metric Data by Using the Metrics Dashboard
Metrics Dashboard Widgets
Size
Modeling Guideline Complianceot
Architecture
Metric Thresholds i
Dashboard Limitations

UIUIUILITIUIUIUI
oSk WN

Collect Model Metrics Using the Model Advisor 5-9
Create a Custom Model Metric for Nonvirtual Block Count 5-11
Collect Model Metrics Programmatically 5-15
Model Metric Data Aggregation 5-18
How Model Metric Aggregation Works 5-18
Access Aggregated MetricData 5-19
Identify Modeling Clones with the Metrics Dashboard 5-22
Collect Compliance Data and Explore Results in the Model Advisor . .. 5-24
Collect Metric Data Programmatically and View Data Through the
Metrics Dashboard 5-29
Fix Metric Threshold Violations in a Continuous Integration Systems
Workflow e 5-33
Project Setup 5-33
GitLab Setupo e 5-35
Jenkins Setup e 5-35
Continuous Integration Workflow 5-36
Customize Metrics Dashboard Layout and Functionality 5-39
Compare Model Complexity and Code Complexity Metrics 5-49
Metric Threshold Values 5-49
Comparing Code and Model Complexity Metric Results 5-49

Create Model Advisor Checks

6|

Overview of the Customization File for Custom Checks 6-2
Common Utilities for Creating Checks 6-4

Create Pass/Fail and Informational Model Advisor Checks
Create an sl customization Function

vi Contents

Create the Check Definition Function for a Pass/Fail Check with No Fix

ACHION . . e 6-5
Create the Check Definition Function for an Informational Check 6-6
Run the Custom Checks in the Model Advisor 6-8
Create a Pass/Fail Model Advisor Check with Fix Action 6-9
Create the sl customization File 6-9
Create the Check Definition File 6-9
Runthe Check e 6-13
Create Model Advisor Check for Model Configuration Parameters 6-16
Create a Data File for a Configuration Parameter Check 6-16
Create Check for Diagnostics Pane Model Configuration Parameters . . . 6-18
Data File for Configuration Parameter Check 6-20
Define Model Advisor Checks for Supported or Unsupported Blocks and
Parameters 6-27
Example o 6-27
Create Block Parameter Constraints 6-27
Create Model Advisor Checks from Constraints 6-29

Define Startup and Post-Execution Actions Using Process Callback

Functions e 6-32
Process Callback Function Arguments 6-32
Process Callback Function 6-32
Tips for Using the Process Callback Function in a sl customization File . 6-33

Defining Custom Model Advisor Checks Workflow 6-34
Create the sl customization File and Function 6-34
Register Custom Checks 6-35
Create a Check Definition Function 6-35

Define the Compile Option for Custom Model Advisor Checks 6-39
Checks for Models That Are Not Compiled by the Model Advisor 6-39
Checks That Require the Model to be Compiled and Simulated by the Model

AdVISOT 6-39
Checks That Evaluate Code Generation Readiness of the Model 6-40
Create Custom Check to Evaluate Active and Inactive Variant Paths from a
Model ... 6-42
Exclude Blocks From Custom Checks 6-47

Model Advisor Customization

7

Customize the Configuration of the Model Advisor Overview 7-2

Use the Model Advisor Configuration Editor to Customize the Model

AdVISOT 7-3
Overview of the Model Advisor Configuration Editor 7-3
Open the Model Advisor Configuration Editor 7-4
Specify a Default Configuration File 7-3

viii

Contents

Customize the Model Advisor Configuration

Suppress Warning Message for Missing Checks

Use the Model Advisor Configuration Editor to Create a Custom Model
Advisor Configuration i

Programmatically Customize Tasks and Folders for the Model Advisor

Register Tasks and Folders
Define Custom Taskso oot e
Define Custom Folders i

Programmatically Create Procedural-Based Configurations
Create Procedural-Based Configurations

Update the Environment to Include Your Custom Configuration
Load and Verify a Custom Configuration
Deploy Custom Configurations

Create and Deploy a Model Advisor Custom Configuration

7-15
7-15
7-15
7-16
7-17

7-19
7-19

7-22

8|

Highlight Functional Dependencies

Highlight Dependencies for Multiple Instance Reference Models

Refine Highlighted Model
Define a Simulation Time Window
Exclude Blocks
Exclude Inputs of a Switch Block

Refine Dead Logic for Dependency Analysis
Analyzethe Dead Logic,

Create a Simplified Standalone Model

Highlight Active Time Intervals by Using Activity-Based Time Slicing .
Highlighting the Active Time Intervals of a Stateflow State or Transition
Activity-Based Time Slicing Limitations and Considerations
Stateflow State and Transition Activity

Simplify a Standalone Model by Inlining Content
Workflow for Dependency Analysis

Dependency Analysis Workflow
Dependency Analysis Objectives

8-28
8-29
8-29
8-35
8-35

8-36

Configure Model Highlight and Sliced Models
Model Slice Manager ittt
Model Slicer Optionsttt e e
Storage Options it
Refresh Highlighting Automatically
Sliced Model Optionst i
Trivial Subsystems
Inline Content Options i,

Model Slicer Considerations and Limitations
Model Compilation
Model Highlighting and Model Editing
Standalone Sliced Model Generation
Sliced Model Considerationscvviiiiinennnn....
Port Attribute Considerations
Simulation Time Window Considerations
Simulation-based Sliced Model Simplifications
Starting Points Not Supported
Model Slicer Support Limitations for Simulink Software Features
Model Slicer Support Limitations for Simulation Stepper
Model Slicer Support Limitations for Simulink Blocks
Model Slicer Support Limitations for Stateflow

Using Model Slicer with Stateflow
Model Slicer Highlighting Behavior for Stateflow Elements
Using Model Slicer with Stateflow State Transition Tables
Support Limitations for Using Model Slicer with Stateflow

Isolating Dependencies of an Actuator Subsystem
Choose Starting Points and Direction
View Precedents and Generate Model Slice

Isolate Model Components for Functional Testing
Isolate Subsystems for Functional Testing
Isolate Referenced Model for Functional Testing

Refine Highlighted Model by Using Existing .slslicex or Dead Logic
ReSUlS

Simplification of Variant Systems
Use the Variant Reducer to Simplify Variant Systems
Use Model Slicer to Simplify Variant Systems

Programmatically Resolve Unexpected Behavior in a Model with Model
Slicer

Programmatically Resolve Unexpected Behavior in a Model with Model
Slicer e
Prerequisites i e

Find the Area of the Model Responsible for Unexpected Behavior
Isolate the Area of the Model Responsible for Unexpected Behavior

Investigate the Sliced Model and Debug the Source Model
Clean Up . ..ot e

8-63

8-65
8-65
8-65

8-66

8-88
8-88
8-88
8-90
8-94
8-97

ix

X

Contents

Refine Highlighted Model Slice by Using Model Slicer Data Inspector . 8-99
Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

... 8-99

Debug Slice Simulation by Using Fast Restart Mode 8-106
Simulate and Debug a Test Case in a Model Slice 8-106
Isolate Referenced Model for Functional Testing 8-113
Analyze the Dead Logic 8-117

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector
.. 8-122

Get Started

* “Simulink Check Product Description” on page 1-2

* “Assess and Verify Model Quality” on page 1-3

* “Detect and Fix Model Advisor Check Violations” on page 1-4

* “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-8

* “Detect and Fix Compliance Issues” on page 1-12

+ “Refactor Models to Improve Component Reuse” on page 1-16

* “Simplify Model for Targeted Analysis of Complex Models using Model Slicer Tool” on page 1-20

1 Get Started

Simulink Check Product Description

1-2

Verify compliance with style guidelines and modeling standards

Simulink Check provides industry-recognized checks and metrics that identify standard and guideline
violations during development. Supported high-integrity software development standards include
DO-178, ISO 26262, IEC 61508, IEC 62304, and MathWorks Advisory Board (MAB) Style Guidelines.
Edit-time checks identify compliance issues as you edit. You can create custom checks to comply with
your own standards or guidelines.

Simulink Check provides metrics such as size and complexity that you can use to evaluate your
model’s architecture and compliance to standards. A consolidated metrics dashboard lets you assess
design status and quality. Automatic model refactoring lets you replace duplicate design elements,
reduce design complexity, and identify reusable content. The Model Slicer tool isolates problematic
behavior in a model and generates a simplified model for debugging.

Support for industry standards is available through IEC Certification Kit (for ISO 26262 and IEC
61508) and DO Qualification Kit (for DO-178).

Key Features

+ Edit-time checking to identify model guideline violations

» Compliance checking for MAB style guidelines and high-integrity system design guidelines
(DO-178, IS0 26262, IEC 61508, IEC 62304)

* Compliance checking for secure coding standards (CERT C, CWE, ISO/IEC TS 17961)
* Custom check authoring with Model Advisor Configuration Editor

* Metrics for computing model size, complexity, and readability

» Dashboard providing consolidated view of metrics and project status

* Model refactoring with clone detection and model transformations

Assess and Verify Model Quality

Assess and Verify Model Quality

With the Simulink Check product, you can use industry-recognized checks and metrics that identify
standard and guideline violations. Supported high-integrity software development standards include
the DO-178, ISO 26262, IEC 61508, IEC 62304, and MathWorks Advisory Board (MAB) style
guidelines. Use edit-time checking, to identify compliance issues as you develop your model. And,
when you are done editing, to assess whether your model complies with size, architecture, and
compliance requirements, run the Metrics Dashboard. The Metrics Dashboard contains widgets that
visualize the metric data. To obtain detailed results, drill in to the data.

From the Metrics Dashboard, you can fix compliance issues by launching the Model Advisor. To
determine whether you can automatically refactor a model to increase component reuse, launch the
Clone Detector.

Functions and classes are available for customizing the Metrics Dashboard and Model Advisor. For
example, you can write your custom checks and use the Model Advisor Configuration editor to create
a custom configuration. Use the Metrics Dashboard functions and classes to configure the compliance
metric widgets to point to the custom configuration.

In this tutorial, you will learn to:

Address Model Advisor compliance issues.
Run the Metrics Dashboard to obtain and analyze metric data.
Address MAB and High Integrity check violations from the Metrics Dashboard.

Refactor a model to improve component reuse by launching the Clone Detector app from the
Metrics Dashboard.

A W N -

At the end of the tutorial, there are links to topics that provide more information.

To start the tutorial, see “Detect and Fix Model Advisor Check Violations” on page 1-4.

1-3

1 Get Started

Detect and Fix Model Advisor Check Violations

The Model Advisor checks your model or subsystem for modeling conditions and configuration
settings that cause inaccurate or inefficient simulation and inefficient generated code and code that is
unsuitable for safety-critical applications. The Model Advisor checks can help you verify compliance
with industry standards and guidelines. By using the Model Advisor, you can implement consistent
modeling guidelines across projects and development teams.

A subset of Model Advisor checks support edit-time checking. With edit-time checking, you can check
for model conditions while you develop a model. Highlighted blocks in the model editor window alert
you to issues in the model.

This tutorial uses the example model sldemo fuelsys. This model is an air-fuel ratio control system
designed with Simulink and Stateflow.

The figures show portions of the sldemo_fuelsys model. The top-level model is a closed-loop
system that consists of a plant (Engine Gas Dynamics) and a controller (the Fuel Rate Control
subsystem). The plant allows engineers to validate the controller through simulation early in the
design cycle. The control logic is a Stateflow chart that specifies the different modes of operation.

Fault-Tolerant Fuel Control System

(WA

Throlie
Command

Dashboard

engine_spasad

Enginge Speed spead_sw

throttle_sw

Thratile Angle
Fault Switch

U

4

! shrotl N
thrattie engine speed o2 out

- (LR TES] Pp ™

heotlle_Angle_Selector

[)

-
(e |

throtile angls MAP
Iden)) (bar}

i

il

speed

i

Engine Speed
Fault Switch

Engine_Speed_Selactor| . s} n
gine_spasc_ Convert b plupnsors fued_rate f—— Convert P fusl airffuel ratio
— [C2] fusel (9= 1) }

To Plant

[

BO0_EW

Engmne (as Dynamics
eqo

[

EGO Fault Switch

fuel_rale_contno

02 Vaoltage_Selector fuel air_fuel_ratio
map_sw il L
map

MAF Fault Switch —

!
il

P_Selector

T Contraller

Open the Dashboard subsystem to simulate any combination of sensor failures. Cepynght 1990-2017 The Mathiwerks, ing.

1-4

Detect and Fix Model Advisor Check Violations

Fuel Rate Control Subsystem

! I

> »l1 G | senzors)

i <spaed> (/] est_aiflow o st _airflow
oS} L= L 3] e

validate_sample_time

¥
B
:

o 9's)
BE_2 fb_c i | fhi_comaction fual_rate —b-

= Is
D '-} | fuel_mada (= o }uel—m
1) — 85 | 2_normal - |
— t airflow_calc

fuel_mode - fuel_moda
s} | Jn_'l
mniml]_lc
fual_calc
o T 5 (Fressure A (Thodle i (Bpesd By
1 1 1 I 1 I 1 I
I I] I 1 I] I
1 1 1 1 1 I 1 I
1 I] I] I]]
o # P # e # e S 4
;’F-a;ln e e oy e e o EL e S e i T,.....,.,_...,_,,...,..........'....."_,.v.....-..-.....,.-uq...".-"-...,‘.I
i » (Rl [
i i INC . = INE i
E L ¥ e 4 MNC . ~[Two 2 s h Thres 1— . |Four i
i . 3 _Jrq—] 1 S0 e !
' Er OEC DEC OEC !
i = L |
N e b i
; oo g;:h;uae ... \:
i Fuel_Disabied = i
i (es_o=es_i} en: i
| fuel_mode = DISABLED;, i
i (Running H) E
H | W [es_ispeed > max_speed) s |
| (Cow Emissions -) (Rich_Moaure £ 5
i L Warmu (H en; H
I fusl_mode = LOW, £ fusl_mods = RICH; _f/ :
H / i
; | [in{Speed.normal) & ... i
' [in{02 4 02 normal)] i es5_ispeed < (max_speed - hys)] !
i I iniEad A i :
H 2r_,L._1 [in{Fail Onaj] [tinfFail Multij] A 5 |
; —0 & = |
E " s e i
1 ormal [in{Fai.Cnej] [m(FaiI.MuI'.i]]\".l i
[1 enter{Fail Mult) i
i = i
; fin{Fail.N b=1- :
i LA axit{Fail Mult} !
E L 1 = i
et 4 b S :
| -

L 0 0 0 0 0 0 0 0 L B i

Detect and Fix Model Advisor Check Violations While You Edit

1 Set your current folder to a writeable directory.
2 Open the model sldemo fuelsys by typing this command:

open_system('sldemo fuelsys')

1-5

1 Get Started

3 To use edit-time checking, on the Modeling tab, select Model Advisor > Edit-Time Checks.

The highlighted blocks and subsystems indicate compliance issues.

4 Pause over a highlighted block and click the warning icon. A dialog box provides a description of
the warning. For detailed documentation on the check that detected the issue, click the question
mark. These blocks contain edit-time warnings because of incorrect block names.

(1)
Block name violation
Caused by
« Block name has incorrect characters

- dvise @ Suppress ®

(1]
C
M

1
-
£

To exclude a block from a selected check, you can click Suppress.

5 Openthe Engine Gas Dynamics subsystem by double-clicking it. Pause over the air/fuel
ratio output port and click the warning icon.

f vV
(3 }(g 2 (9!55 fuel rate 02_out

fuel (g/s) V) 02_out
(rad/s) (afs) (1)
Engine Speed, N Mass Airflow Rate ———— P air flow air/fuel ratio
(rad/s)| (radss) (95) (9/5)|(gss) (1) (

engine speed

Mixing & Combuisfi air/fuel ratio
(deg) (bar) ixing & Combustion

Throttle Ang. MAP (bar) (ba

e

throttle angle (deg) (bar) MAP
Throttle & Manifold

This output port returns warnings because its name violates two checks: “Check character usage
in block names” and “Check port block names”.

6 Address the warnings by replacing the / symbol and the space in the block name with
underscores. The block is no longer highlighted.

7 Address the warnings for the other highlighted blocks in the Engine Gas Dynamics subsystem.

Detect and Fix Model Advisor Check Violations Interactively

On the Modeling tab, select Model Advisor.
Select the top-level model sldemo fuelsys from the System Hierarchy and click OK.
In the left pane, in the By Product > Simulink Check > Model Standards > DO-178C/
DO0-331 folder, select:
* Check safety-related diagnostic settings for solvers
* Check safety-related diagnostic settings for sample time
* Check safety-related optimization settings for logic signals
4 Right-click DO-178C/D0-331 Checks node, and then select Run Selected Checks.

1-6

Detect and Fix Model Advisor Check Violations

'ﬁ? Medel Advisor - sldemo_fuelsys

File Edit Run Settings Highlighting Help

[» [2+ = Find: solver setings ~|<a > 3 of 23: Found in check name.

[5] Check usage of Gain blocks

[=] Check for model elements that do not link to requirements

[(=) Check safety-related diagnostic settings for data store memory

[(=) Check safety-related diagnostic settings for saving

[E5] Check safety-related model referencing settings

[=] Check safety-related solver settings for sclver options

[=] Check safety-related solver settings for tasking and sample-time

A\ Check safety-related diagnostic settings for solvers

A\ Check safety-related diagnostic settings for sample time

@ Check safety-related optimization settings for logic signals

[0 2] Check safety-related block reduction optimization settings

[2] Check safety-related optimization settings for application lifespan

[0 2] Check safety-related optimization settings for loop unrolling threshold
[2] Check safety-related optimization settings for data initialization

[2] Check safety-related optimization settings for data type conversions
[0 5] Check safety-related optimization settings for division arithmetic exceptions
[] Check safety-related optimization settings for specified minimum and maximum values
[5] Check safety-related code generation settings for comments,

[) Check safety-related code generation interface settings

[] Check safety-related code generation settings for code style

[5] Check safety-related code generation identifier settings

[5] Check safety-related diagnostic settings for compatibility

[5] Check safety-related diagnostic settings for parameters

[=) Check safety-related diagnostic settings for Merge blocks

[(=) Check safety-related diagnostic settings for model initialization

[(=) Check safety-related diagnostic settings for data used for debugging
[=] Check safety-related diagnostic settings for signal connectivity

[=] Check safety-related diagnostic settings for bus connectivity

[=] Check safety-related diagnostic settings that apply to function-call connectivity
[=] Check safety-related diagnostic settings for type conversions

[=] Check safety-related diagnostic settings for model referencing

[2] Check safety-related diagnostic settings for Stateflow

[£ Check safety-related diagnostic settings for signal data

[0 21 ~Check type and size of condition expressions

™1 F=1 ~Displav model version information
<

(@ Upgrade Advisor
(4} Code Generation Advisor

@ Performance Advisor

Check safety-related diagnostic settings for solvers
Analysis

hisl_0043: Solver

Check diagnostic settings in the medel configuration that apply to solvers and might impact safety.

Run This Check
Result: /& Warning
Check diagnostic settings in the model configuration that apply to solvers and might impact

safety.

The model configuration parameters are not set to the recommended values specified in the
data file.

Parameter Current Recommended
Value Values

Warning Algebraic loop (Algebraicl. copMsg) warning error

Warning Minimize algebraic loop warning error
(ArtificialAlgebraicl oopMsg)

Warning Block priority violation warning error
(BlockPriority ViolationMsg)

Warning Automatic solver parameter selection none error

(SelverPrmCheckMsg)

Action

Modify model configuration settings.

Modify Settings

Result:

Help Apply

5 To review the configuration parameters that are not set to the recommended values, click Check
safety-related optimization settings for solvers.

6 To update the parameters to the recommended values, in the right pane, click Modify Settings.

The Model Advisor updates the parameters to the recommended values and details the result.
Repeat step 6 for the Check safety-related diagnostic settings for sample time check.
To verify that your model now passes, rerun the checks.

To generate a results report of the Simulink Check checks, select the DO-178C/D0-331 Checks
node, and then, in the right pane click Generate Report.

10 Close the Model Advisor.

Next, collect metric data on the model and fix other compliance issues by using the Metrics

Dashboard.

1-7

1 Get Started

Collect Model Metric Data by Using the Metrics Dashboard

1-8

To collect model metric data and assess the design status and quality of your model, use the Metrics
Dashboard. The Metrics Dashboard provides a view into the size, architecture, and guideline
compliance of your model.

1 Return to the top level of the sldemo fuelsys model.

2 On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.
3 To collect metric data for this model, click the All Metrics icon.

All Metrics

Analyze Metric Data

The Metrics Dashboard contains widgets that visualize metric data in these categories: size, modeling
guideline compliance, and architecture. By default, some widgets contain metric threshold values.
These values specify whether your metric data is compliant (which appears green in the widget) or
produces a warning (which appears yellow in the widget). Metrics that do not have threshold values
appear blue. Functions and classes are available for specifying noncompliant ranges and for changing
the threshold values.

Collect Model Metric Data by Using the Metrics Dashboard

4\ Metrics Dashboard

METRICS DASHBOARD

"j @ D g[;) Show:
Open Options Non-Compile All Metrics |)
- - Metrics

FILE RUN THRESHOLDS

sldemo_fuelsys

Created by: The Math\Works, Inc. Revision: 1.742
Collected 11472020, 12:46:44 4
on: PM Wamings

MODELING GUIDELINE COMPLIANCE

> (7

88.9% 65.6%
High Integrity MAAB
560
182
» >
High Integrity MAAB

Model Advisor Check Issues

0 0
Code Analyzer Diagnostic
Warnings Warnings

SIZE

21

Blocks

ARCHITECTURE

Actual Reuse

Potential Reuse

Model Complexity

Blocks

Stateflow LOC

MATLAB LOC

0%

1 Models

3 Files

20%

0 20

0 20

0 20

8 MATLAB LOC

B0 stateflow LOC

40%

40

40

40

40

N

System Interface

80% 100%

100

100

100

100

In the Architecture section of the dashboard, locate the Model Complexity widget. To view tooltips,
pause over each vertical bar. This widget is a visual representation of the distribution of complexity
across the components in the model hierarchy. For each complexity range, a colored bar indicates the
number of components that fall within that range. Darker green colors indicate more components. In
this case, several components have a cyclomatic complexity value in the lowest range, while just one
component has a higher complexity. This component has a cyclomatic complexity above 30.
Components with cyclomatic complexity above 30 return warnings. For more information, see
“Cyclomatic complexity metric”

Explore Metric Data

To explore metric data in more detail, click an individual metric widget. For your selected metric, a
table displays the value, aggregated value, and measures (if applicable) at the model component
level. From the table, the dashboard provides traceability and hyperlinks to the data source so that

you can get detailed results.

1-9

1 Get Started

To analyze the model complexity details at the model, subsystem, and chart level, click a bar in the

Model Complexity widget. In this example, the control logic chart has a cyclomatic complexity
value of 51, which is yellow because it is in the warning range.

METRICS DETAILS

Dashboard

VIEW |

Cyclomatic complexity

Metric that calculates the cyclomatic complexity for model, subsystems and charts.

Type

Chart

Model
Subsystem
MATLAE functiom
Subsystem
Subsystem
Subsystem
MATLAB function
MATLAE functiom
MATLAE functiom
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem

Chart

Suhsvstam

Component

control_logic
sldemo_fuelsys
Speed.speed_estimate
fitheta)

Throtile

Throttle & Manifold
switchable_compensation
EGO Sensor

MATLAB Function
gipratio)
feediorward_fuel_rate
airflow_calc

Throttle throttle_estimate
Pressure.map_estimate
Mixing & Combustion
fuel_rate_control

Fueling_Mode Running.Low_Emissions.Normal

rich. mnre

Y

[]
[]
[]
-]
[]
[]
]
[]
[]
-]
[]
[]
[]
[]
[]
[]
(]

Path

sldemo_fuelsys/fuel_rate_control/control_logic

_..Isysffuel_rate_control/control_logic/Speed. speed_estimate
...s/Engine Gas Dynamics/Throttle & Manifold Throttle/f(theta
_.._fuelsys/Engine Gas Dynamics/Throttle & Manifold/Throttle
sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold
_..elsysffuel_rate_controlifuel_calc/switchable_compensafion
_../[Engine Gas Dynamics/Mixing & Combustion/EGO Sensor
...mics/Throttle & Manifold/Intake Manifold/MATLAE Function
_..[Engine Gas Dynamics/Throttle & Manifold/Throttle/g(pratio
_..0_fuelsys/fuel_rate_controlifuel_calcfeediorward_fuel_rate
sldemo_fuelsys/fuel_rate_control/airflow_calc
_..ys/fuel_rate_control/control_logic/Throttle throttle_estimate
...Isysfiuel_rate_controlicontrol_logic/Pressure.map_estimate
sldemo_fuelsys/Engine Gas Dynamics/Mixing & Combustion
sldemo_fuelsys/fuel_rate_control
_..ntrol_logic/Fueling_Mode. Running.Low_Emissions. Mormal

rate cantrolifuel ralelewitchahle comnensatinnlrich mode

To see this component in the model, click the control logic hyperlink.

1-10

Qty

JEPR A PO A U PO PO RS R NS P R PO PO O O A

Model -
Complexity

51

S O = = a a o= BN N N NN NN WD

Model

Complexity (incl.

Descendants)
56

L1l

@

Collect Model Metric Data by Using the Metrics Dashboard

@s‘demn_fueisys » @fuel_rate_cﬂnm}! » ﬁcnntmi_lugic »

(RS fi jPressure i {Thofs T jEpeed = B

] 1] 1 I (|]]

I 1 I 1] 1] 1

I 1 I 1 I 1 I 1

1 1 I] 1] 1 1

e A, E e E i E) e i e E
i 1 Rl |
; ¥ ING M 1 T INC E i
i Ona 1 | | Two l2 = i) — =] FOur !
E - 2 —f— = 1 e 2 = !
H DEC DE DE(E |
=. \ 5

i Fuel_Disabdad

{es_o=es_i} an:

i (Running \U‘,

; ﬂow_E;lissiuns i _ (Rich_Mixture

| en: (H) o

i Warmup (H} an:

; fued_mode = LOW; - fuel_mode = RICH;

i [in(02.A.02_normal)]

: X [in{Fad.Onea)] ingle_Faiura

! e 2 L b

H e

; ormal [in{Fail.Cne)]

H =+

£ [in{Fail Mone)] [
| L e

\I [ee_ispeed = max_spead)]
2

fuel_mode = DISABLED;

[lini Fail_ Multif

P

|I [in{Speed. nomal) & ..
il ed_ispesd < (max_speed - hys]]
.y

/

rll-'.
o R

enter{Fail Multi)

L
= b

[in(Fail Multi}]

exit(Fail Multi}

Refactor Model Based on Metric Data

.| Bhutdown

Once you have used the dashboard to determine which components you must modify to meet quality
standards, you can refactor your model. For example, you could refactor the control logic chart

by moving the logic into atomic subcharts to reduce the complexity for that component.

Next, you will use the Modeling Guideline Compliance widgets to fix issues associated with high-
integrity Model Advisor checks.

1-11

1 Get Started

Detect and Fix Compliance Issues

When you collect metric data, the Metrics Dashboard runs the MAB and high-integrity Model Advisor
checks in the background. The Modeling Guideline Compliance section of the dashboard provides
the percentages of checks that pass and a count of check warnings and errors. You can interactively
investigate these fixes by toggling between the dashboard and your model.

Explore Compliance Results in the Dashboard
1 In the Metrics Dashboard, locate the Modeling Guideline Compliance section. This section

displays the percentage of high-integrity and MAB compliance checks that pass on all systems.
The bar charts show the number of issues reported by the checks in each check group.

MODELING GUIDELINE COMPLIANCE

88.9% 65.6%
High Integrity MAAB

&%% Checks Passzed (incl. Descendants)
TARGET: = 100%

182

2 2
High Integrity MAAE

Model Advisor Check Issues

0 0

Code Analyzer Diagnostic
Warnings Warnings

2 To see a table that details the number of compliance issues by component, click on the High

Integrity bar chart. For more information on this metric, see “Model Advisor Check Issues for
High-Integrity Systems”.

1-12

Detect and Fix Compliance Issues

From the table, click the Throttle component hyperlink. The Throttle component opens in
the model editor. The model editor highlights blocks in the component that have compliance
issues. The Model Advisor Highlighting dialog box lists checks that do not highlight results.

ideg) &

(bar)

1'=]
{bar) |

(g/z] "t

Throttle Flow vs. Valve Angle and Pressure

In the Metrics Dashboard, return to the main dashboard page by clicking the Dashboard icon.
Click the High Integrity percentage gauge.

The Grid view enables you to identify patterns in results. The grid contains a row for each model
component and a column for each check. To see check and component names, hover over a table
element.

To see the status for each compliance check, click the Table view.
Expand the sldemo fuelsys node.

To explore check results in more detail, click the Check safety-related diagnostic settings for
model referencing hyperlink.

In the Model Advisor Highlighting dialog box, click Check safety-related diagnostic settings
for model referencing hyperlink.

A Model Advisor report opens. The report lists current model configuration settings and their
recommended values.

Update Model to Fix Compliance Issues

To change a parameter's current value to the recommended value, click a parameter. The
Configuration Parameters dialog box opens.

1-13

1 Get Started

Change the parameter setting to what the Recommended Value column in the report indicates.
Click Apply and close the dialog box.
Close the Model Advisor report.

gua A W N

In the Model Advisor Highlighting dialog box, click the Check safety-related diagnostic
settings from compatibility check.

The Model Advisor report opens.

For this check, repeat steps 1 through 4.

Close the Model Advisor Highlighting dialog box and return to the Metrics Dashboard table

Rerun Model Metrics

In the Metrics Dashboard table, return to the main dashboard page, by clicking Dashboard.
To rerun the model metrics, click All Metrics.

Confirm that the number of High Integrity check issues has reduced and the compliance
percentage has increased.

1-14

Detect and Fix Compliance Issues

£\ MODELING GUIDELINE COMPLIANCE

< <
89.0% 65.6%
High Integrity MAAB
560
180
—! I_l:-
High Integrity MAAB

Model Advisor Check |ssues

0 0

Code Analyzer Diagnostic
Warnings Warnings

Next, use the Actual Reuse and Potential Reuse widgets to investigate and replace clones across a
model hierarchy.

1-15

1 Get Started

Refactor Models to Improve Component Reuse

1-16

You can use the Metrics Dashboard to identify clones across a model hierarchy. Clones are identical
MATLAB Function blocks, identical Stateflow charts, and subsystems that have identical block types
and connections. Clones can have different parameter settings and values. To replace clones with
links to library blocks, you can open the Clone Detector app from the Metrics Dashboard.

Use the Clone Detector app to refactor a model, improve model componentization and readability,
and reuse components within a model. In this example, you launch the Clone Detector from the
Metrics Dashboard. However, you can also open it by opening the Apps tab and clicking Clone
Detector.

Identify and Replace Clones with Links to Library Blocks

1 In the Architecture section, the blue bar in the Actual Reuse widget indicates the fraction of
total number of subcomponents that are linked library blocks. Pause over the Actual Reuse
widget to see more information. For this model, 10% of the total number of subcomponents are
linked library blocks.

2 To see more details, click the blue bar. System Lag, Throttle Command, and CheckRange are

linked library blocks.

Refactor Models to Improve Component Reuse

4\ Metrics Dashboard

METRICS DETAILS

2 B=

Dashboard ~ Table Tree
WIEW VISUALIZATIONS

Library Linked Component Content

Metric that calculates the fraction of total number of subcompenents that are linked library blocks.

Type Component
Subsystem Dashboard
Subsystem Engine Gas Dynamics

Subsystam Mixing & Combustion
MATLAB Function |EGO Sensor
Throttle & Manifold
Subsystem Intake Manifold
MATLAB Function |MATLAB Function

Subsystem

Subsystam Throttle
MATLAB Function |f(theta)
MATLAB Function |gipratio)

Subsystem To Controller

Subsystem To Plant

Subsystem fuel_rate_control
Subsystem airflow_calc

Chart control_legic

Subsystem Pressure.map_estimate
Subsystem Speed.speed_estimate
Subsystem Throttle throttle_estimate
Subsystem fuel_calc

Subsystem feediorward_fuel_rate
Subsystem switchable_compensation
Subsystem disabled_mode
Subsystem low_mode

Subsystem rich_mode

Subsystem validate_sample_time
Subsystem System Lag

Subsystem Throttle Command
Subsystem CheckRange

Path

sldemo_fuelsys/Dashboard

sldemo_fuelsys/Engine Gas Dynamics

sldemo_fuelsys/Engine Gas Dynamics/Mixing & Ct ion
...fuelsys/Engine Gas Dynamics/Mixing & Combustion/EGO Sensor
sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold
_..fuelsysfEngine Gas Dynamics/Throttle & Manifold/Intake Manifold
...5 Dynamics/Throttle & Manifold/intake Manifold/MATLAB Function
sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold/Throtile
..._fuelsys/Engine Gas Dynamics/Throttle & ManifoldThrottlef(theta
_..fuelsysfEngine Gas Dynamics/Throttle & Manifold/Throttle/g(pratio
sldemo_fuelsys/To Controller

sldemo_fuelsys/To Plant

sldemo_fuelsys/fuel_rate_control
sldemo_fuelsys/fuel_rate_control/airflow_calc
sldemo_fuelsys/fuel_rate_control/control_logic
...0_fuelsysifuel_rate_controlicontrol_logic/Pressure.map_estimate
_.emo_fuelsysifuel_rate_controlicontrol_logic/Speed.speed_estimate
...0_fuelsys/fuel_rate_controlicontrol_logic/Throftle throttle _estimate
sldemo_fuelsys/fuel_rate_controlfuel_calc

sldemo_fuelsys/fuel_rate_controlifuel_calc/feedforward_fuel_rate

..demo_fuelsys/fuel_rate_controlifuel_calc/switchable_compensation

...|_rate_control/fuel_call itchabl D tion/disabled_mode

_cor

...Sfuel_rate_col [i _comp

flow_mode
__.sffuel_rate_control/fuel_calc/switchable_compensation/rich_mode
sldemo_fuelsys/fuel_rate_controlivalidate_sample_time
..._fuelsys/Engine Gas Dynamics/Mixing & Combustion/System Lag
sldemo_fuelsys/Throttle Command

demo_fuelsysffuel_rate_conirolivalidate_sample_time/CheckRange

Library Link...

0%
10%
33%
0%
0%
0%
0%
0%
0%
0%
0%
0%
7%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
50%
100%
100%
100%

Reused Comp...

071
1/10
1/3
071
0/6
0/2
071
0/3
011
011
071
071
1/14
011
0/4
071
011
01
0/6
071
0/4
01
071
071
112
111
171
171

M

3 Return to the main dashboard page.

In the Architecture section, the Potential Reuse bar indicates that the model contains clones.
Pause over Potential Reuse. For this model, 7% of the subcomponents are clones.

5 To see more details, click the yellow bar. Pressure.map estimate and
Throttle.throttle estimate are clones of each other.

6 To determine whether these clones are candidates for replacement with linked library blocks,

click Open Conversion Tool.

The Clone Detector app opens as a new tab in the model.

7 In the Clone Detection Actions and Results pane, click the Map Clone Groups to Library

tab.

There is one clone group. The light blue shading indicates that these clones are similar clones
and not exact clones. Similar clones have different parameter settings and values.

8 Expand the clone group.

1-17

1 Get Started

This clone group consists of two subcharts.

4 sldemo_fuelsys * - Simulink prerelease use - O X
SIMULATION MODELING FORMAT CLONE DETECTOR %
@ @ Find Clones in System E:l D
View Settings | cigemo_fus sys L Find Replace Check
= = Clones Clones Equivalency «
WIEW PREPARE DETECT REFACTOR VERIFY ry
\"_I sldemo_fuelsys X control_logic Throttle Detected Clone Properties ¥ x
® sldemo fuelsys b - Block Difference between clone candidates of clone group:
@ Fault-Tolerant Fuel Control System
E3 M=
LYY —
= =N e,]_.:\
[deg)
=] Dashboard @ = e spued u2_ou [
Throttie Angle ot [l -ty o
» Fondl Sowrich Throee_fnge_Selecior
engne_spesd radies o e pzar)
O Engne Sposd - M':"" e o L\\)
Engine Speed -
Faus Swkch Engine_speed_sewctor (o A L0} | sl _— 1y
— g fued L ™ T T m
Bg0_sw -\ “:' fo Plart Engine Gas Dynamics
EGO Fault Switch D-‘_
02 Vollage_Sefector Tusd i _fued_ratio
NEM
map_sw
map
MAP Fauk Swich F‘-‘_
AP Senctar L) Refactor Benefits
»] Open the Dashboard to simulate any bination of sensor failures. Copyright 1990-2017 The MathWorks, Inc. Overall : 1.2346
Clone Detection Actions and Results ¥ x
Logs Map Clone Groups to Library Model Hierarchy ~
Library to place clones: |newlLibraryFile Browse...
Specify special library path for each done group in the Specify Library Path to Replace Clones
Minimum Difference - — Maximum Difference
v Simi.. 2 2 2 a newLibraryFile —)
slde... Baseline
slde... View paramete...
£ >
W
Ready T4% ode4s

9 To determine parameter differences, in the Block Difference column, click View parameter
difference.

The subcharts in this clone group call Simulink functions that differ only by the value of the
breakpoints parameters in the Lookup Table blocks inside of them.

10 In the Map Clone Groups to Library tab, for the Library to place clones parameter, use the
Browse button to choose a library or specify a new library name. If you specify a new library
name, the app creates the library.

11 Save the model to your working folder and, in the Clone Detector tab, click Replace Clones.
The app replaces similar clones with links to masked library subsystems, if possible.

In the Logs tab, click the latest log.

The log contains a message indicating that the clones cannot be replaced with linked library
blocks because the data in the Simulink Functions can not be promoted to subchart data.

1-18

Refactor Models to Improve Component Reuse

12 Close the Metrics Dashboard and the model.

When the Clone Detector app refactors a model to replace clones with links to library blocks, the app
creates a backup folder. The backup folder name has the prefix m2m_<model name>. If you have a
Simulink Test™ license, you can verify the equivalency of the refactored and original models by
clicking Check Equivalency in the Clone Detector tab.

Explore Other Options

This table contains a list of common tasks that you can address with Simulink Check.

Task

Reference

Simplify and debug complex models.

“Highlight Functional Dependencies” on page 8-
2

Run Model Advisor checks for compliance with
safety standards associated with High-Integrity
System Modeling and MAB Control Algorithm
Modeling guidelines.

“Check Model Compliance by Using the Model
Advisor” on page 3-2

Write custom Model Advisor checks.

“Defining Custom Model Advisor Checks
Workflow” on page 6-34

Create and deploy a custom Model Advisor
configuration.

“Create and Deploy a Model Advisor Custom
Configuration” on page 7-25 and “Use the Model
Advisor Configuration Editor to Customize the
Model Advisor” on page 7-3

Learn more about using the Metrics Dashboard to
collect and view metric data for quality
assessment.

“Collect and Explore Metric Data by Using the
Metrics Dashboard” on page 5-2

Configure compliance metrics, add metric
thresholds, and customize the Metrics Dashboard
layout.

“Customize Metrics Dashboard Layout and
Functionality” on page 5-39

Use the Model Transformer tool and the Clone
Detector app to refactor a model to improve
model componentization and readability and
enable reuse.

“Transform Model to Variant System” on page 3-
22 and “Enable Component Reuse by Using
Clone Detection” on page 3-26

Learn more about how using Simulink products
to test models and code, check for design errors,
check against standards, measure coverage, and
validate the system.

“Verification and Validation”

1-19

1 Get Started

Simplify Model for Targeted Analysis of Complex Models using
Model Slicer Tool

You can simplify simulation, debugging, and formal analysis of large, complex models by focusing on
areas of interest in your model. After highlighting a portion of your model using the Model Slicer, you
can generate a simplified standalone model. The simplified model contains the blocks and
dependency paths in the highlighted portion. Apply changes to the simplified standalone model based
on simulation, debugging, and formal analysis, and then apply these changes back to the original
model.

1 The example model sldemo _mdlref basic contains three instances of the model
sldemo_mdlref counter. To open the model, at the MATLAB command prompt, enter:
open_system('sldemo mdlref basic')

2 To open the Model Slicer Manager, on the Model Verification, Validation, and Test section of the
Apps tab, click Model Slicer.

3 Inthe Model Slice Manager, click the arrow to expand the Slicer configuration list.
Set the slice properties:

* Name: Slicel

Color: ! (magenta)

* Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from a block in
your model, depending on which direction you want to trace the signal propagation.

5 Add CounterC as a starting point. In the model, right-click CounterC and select Model Slicer
> Add as Starting Point.

1-20

Simplify Model for Targeted Analysis of Complex Models using Model Slicer Tool

ﬁ Model Slice Manager: sldemo_mdiref_basic >

b Slice configuration list H a @
Name: |5I|'ﬂel | .
Description:

Signal propagation: 4= ||.pslma1| '|

Starting Points [clzar all
B LF counterc

b Simulation time window
b Refine Dead Logic

[Export to Web| | Generate Slice

Slicer Active

The Model Slicer now highlights the upstream constructs that affect CountercC.

1-21

Get Started

1-22

6 In the Model Slice Manager, click Generate slice.

7 In the Select File to Write dialog box, select the save location and enter a model name. The
simplified standalone model contains the highlighted model items.

Component-Based Modeling with Model Reference

-

= nput

—»{_) [

| I
| 1
Rackasdad

Pulze

Genarator "
with Ts=1.0
CounterC

Copyright 1990-2014 The MathWorks, Inc.

8 To remove highlighting from the model, close the Model Slice Manager.

You can now analyze the simplified standalone model and apply any changes to the source model.

See Also

More About

. “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer” on page 8-88
. “Model Slicer Considerations and Limitations” on page 8-43

. “Highlight Functional Dependencies” on page 8-2

. “Refine Highlighted Model” on page 8-12

_'\. .

Verification and Validation

* “Test Model Against Requirements and Report Results” on page 2-2

* “Analyze a Model for Standards Compliance and Design Errors” on page 2-7
* “Perform Functional Testing and Analyze Test Coverage” on page 2-9

* “Analyze Code and Test Software-in-the-Loop” on page 2-12

2 Verification and Validation

Test Model Against Requirements and Report Results

Requirements - Test Traceability Overview

Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

System Functional
requirements requirements |-—————LUpdate reguirements
i
i ——————— T raceabilit',r————:
Traceability !
| |
I |
Develop Develop Develop test
specification /| ——= detailed e cases o Run tests ——#=| Report results
architecture model

2-2

T Refine

In this example, you conduct a simple test of two requirements in the set:

That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements

1

Create a copy of the project in a working folder. The project contains data, documents, models,
and tests. Enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

In the project models folder, open the simulinkCruiseAddRegExample.s1lx model.

Display the requirements. Click the == icon in the lower-right corner of the model canvas, and
select Requirements. The requirements appear below the model canvas.

Test Model Against Requirements and Report Results

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

simulinkCruiseAddReqExample
® |s'\mu|ink0uwsaAddRquxample » -
CruiseOnOff \
=+ ralzen £ CruiseOnOif
CruiseOnOff o)
d
_ —, boolean =+ Brake Wi Breie » jage
@—— efbaged
O Brake
single Speed
=
Speed
=, boolean E—.Coastsatsw CoastSetSw
4
CoastSetSw
@I}nnlean ’—
= — AccelResSw
s | AccelResSw Compute target speed
» ||
([|
Requirements - simulinkCruiseAddReqExample P x
view: [reauiremenss ~| [[0V[@] [B[[E] =] [4][2 @] e
v % simulinkCruiseChar... []-]
Bi A ST —] |
Bl 2 Functional Requirements Functional Requirements [)()
Sl Safety Requirements Safety Requirements [][]
Ready 125%

Property Inspector

Reguirement: A 1.2

Details
* Properties
Type: Functional -
Index: 1.2

Custom ID: |4 1.2

Summary: ‘ Set Speed | Decelerate Button

Description Rationale

4 [Juo 5 7 U W

Set Speed/Decelerate Button
The controller shall have an input button to:

set the target speed to the current vehicle speed when the cruise
control is not engaged (active)

decelerate (reduce) the target speed when the cruise control is
engaged (active)

Keywords: |

P Revision information:

¥ Links

El 4= iImplemented by:
T CoastSetsw

»r Comments

FixedStepDiscrete

5 In the Project window, open the Simulink Test file sTReqTests.mldatx from the tests folder.

The test file opens in the Test Manager.

Link Requirements to Tests

Link the requirements to the test case.

1 In the Project window, open the Simulink Test file sLReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test

Case.

Alink to the Safety Tests test case is added to Verified by. The yellow bars in the Verified

column indicate that the requirements are not verified.

2-3

2 Verification and Validation

2-4

Requirements - simulinkCruiseAddReqExample P X
View: |Requirements | |[% 3| E | | & [E & || B il (= Se...
I ~
v B 3 Safety Requirements | Safety Requirements [][]
‘H 31 531 Vehicle braking dise... [))
B 32 53.2 System engagemen... [][]
E 33 |s33 Target speed limita... [)]
E 34 534 Speed outside limit... l Il I W
Ready 150%

2 Also add alink foritem S 3.4.

Run the Test

¥ Links

El 4= Verified by:
= Safety Tests @

FixedStepDiscrete

The test case uses a test harness SafetyTest Harnessl. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

* The BrakeTest sequence engages the cruise control, then applies the brake. It includes the

verify statement

verify(engaged == false, ...

'verify:brake', ...
'system must disengage when brake applied')

* The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false, ...

'verify:limit',...
'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.

2 When the test finishes, review the results. The Test Manager shows that both assessments pass
and the plot provides the detailed results of each verify statement.

Test Model Against Requirements and Report Results

Results and Artifacts

|Filte' results by name or tags, e.g. tags: test

\}_f

» Results: 2019-Jun-21 11:29:55 1@
+ [E] Safety Tests

- [[&] Verify Statements
verify-brake

' wverify:limit

Block Path
Interp Method

Sync Method

Units

Sample Time

Data Type

[werify:limit
SafetyTest_Harness1/Test ..
zoh

union

slTestResult

[5] safety Tests x| [Visualize x

W verify:limit

Fail -

Pass 4 perpmmrrrmyessrnnne rrssrennes T R S —— —

Untested 4 bttt

3

Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Requirements - simulinkCruiseAddRegExample LI 4 | |
View: [Requirements ~ | (5] 0 [®] [L][E 4B @ e Kepords: |

Index : = Verified I ted ~ } Revision information:

v E 3 Safety Requirements Safety Requirements
ety Req ety Req (|)() |~ o
B 32 53.2 System engagement spe...)) El 4= Verified by:
E 33 533 Target speed limitations [][] = Safety Testso
v

Ready 125% FixedStepDiscrete

Report the Results

1

Create a report using a custom Microsoft Word template.

From the Test Manager results, right-click the test case name. Select Create Report.

In the Create Test Result Report dialog box, set the options:

+ Title — SafetyTest

* Results for — Al1l Tests

* File Format — DOCX
* For the other options, keep the default selections.

Enter a file name and select a location for the report.

For the Template File, select the ReportTemplate.dotx file in the documents project

folder.

Click Create.

2-5

2 Verification and Validation

2 Review the report.

a The Test Case Requirements section specifies the associated requirements

b The Verify Result section contains details of the two assessments in the test, and links to
the simulation output.

See Also

Related Examples

. “Link to Requirements” (Simulink Test)
. “Validate Requirements Links in a Model” (Simulink Requirements)
. “Customize Requirements Traceability Report for Model” (Simulink Requirements)

2-6

Analyze a Model for Standards Compliance and Design Errors

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

standards |
1
1
-_____/r'ﬁ‘“ !
I 1
: |
1
1
' Model analysis: check
Develop detailed > Add.prop!erty > standards, checkfor_d.eslgn Y—»| Report results
model specifications errors, check specified
properties
A N
Resolve errorsand | Replicate errors
confirm exceptions [Analyze dependencies

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for MathWorks®
Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1

Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample

In the Modeling tab, select Model Advisor.

Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
Check your model for MAB style guideline violations using Simulink Check.

2-7

2 Verification and Validation

2-8

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:
* Check Indexing Mode
¢ Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.

¢ Click Check model diagnostic parameters to review the configuration parameter settings
that violate MAB style guidelines.

d In the right pane, click the parameter links to update the values in the Configuration
Parameters dialog box.

e To verify that your model passes, rerun the check. Repeat steps ¢ and d, if necessary, to
reach compliance.

f To generate a results report of the Simulink Check checks, select the MAB Checks node,
and then, in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Product > Simulink Design Verifier folder, select Design Error
Detection. All the checks in the folder are selected.
In the right pane, click Run Selected Checks.

3 After the analysis is complete, expand the Design Error Detection folder, then select checks to
review warnings or errors.

4 In the right pane, click Simulink Design Verifier Results Summary. The dialog box provides
tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model. Click the
Compute target speed subsystem, outlined in red. The Simulink Design Verifier Results
Inspector window provides derived ranges that can help you understand the source of an
error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector window displays
information that an overflow error occurred. To see the test cases that demonstrate the
errors, click View test case.

¢ Review the analysis report. In the Simulink Design Verifier Results Inspector window, click
Back to summary. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples

. “Check Model Compliance by Using the Model Advisor” on page 3-2
. “Collect Model Metrics Using the Model Advisor” on page 5-9

. “Run a Design Error Detection Analysis” (Simulink Design Verifier)
. “Prove Properties in a Model” (Simulink Design Verifier)

Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Functional requirements

Create test inputs or Add run-time
import external test data verifications
» Runtests Y Collect > Report
coverage results
Add expected Dut_put_s Set coverage criteria 4
and acceptance criteria
N
[y +
Analyze dependencies
Refine model
Add tests

Refine requirements

Incrementally Increase Test Coverage Using Test Case Generation

This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model
1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification','src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddRegExample
sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTest Harnessl')

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager. At the command line, enter:

2-9

2 Verification and Validation

sltest.testmanager.load('slReqTests.mldatx")
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:
* Brake pedal is pressed

* Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

* Select Record coverage for referenced models

+ Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.
The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

* Select Decision, Condition, and MCDC.

3 To run the tests, on the Test Manager toolstrip, click Run.

4 When the test finishes select the Results in the Test Manager. The aggregated coverage results
show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

* AGGREGATED COVERAGE RESULTS

ANALYZED MODEL REFORT CO.. DECISION CONDITION MCDC +

[*a] simulinkCruiseaddRegExample A A S0% e— 1% - 25% wm

*
Add Tests for Missing Coverage Export

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the sTReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.

3 Under Harness, choose Create a new harness.

4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested
must either be on the MATLAB path or in the working folder.

5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results
include coverage for the combined test case inputs, achieving increased model coverage.

2-10

Perform Functional Testing and Analyze Test Coverage

See Also

Related Examples

. “Link to Requirements” (Simulink Test)

. “Assess Model Simulation Using verify Statements” (Simulink Test)

. “Compare Model Output To Baseline Data” (Simulink Test)

. “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
. “Increase Test Coverage for a Model” (Simulink Test)

2-11

2 Verification and Validation

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics such as length
and cyclomatic complexity. Typically for handwritten code, you check for run-time errors with static
code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, refine the code and add tests. For generated code, demonstrate that
code execution produces equivalent results to the model by using the same test cases and baseline
results. Compare the code coverage to the model coverage. Based on test results, add tests and
modify the model to regenerate code.

Detailed model /
R - Add tests /
-------- Traceability-——-——-- -

Reguirements ty Refine model

T

— :

Traceability '

N 1

1

Code analysis
#| Error detection
Code metrics

Develop or
generate code

.| Verify results / Analyze = Report
equivalence coverage " results

Run tests

Y

[y

h 4

Refine code |«

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics, code defects, and MISRA compliance. To produce
more MISRA compliant code from your model, you use the code generation and Model Advisor. To
check whether the code is MISRA compliant, you use the Polyspace MISRA C:2012 checker and
report generation capabilities. For this example, you use the model
simulinkCruiseErrorAndStandardsExample. To open the model:

1 Open the project.
path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’', ...
'verification','src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

2-12

Analyze Code and Test Software-in-the-Loop

4)

1) TR P CruiseOnOff
CruiseOnOff
engaged
(2 } P Brake Be0 —E engaged @
—£ Brake engaged
Brake
@ —F Speed
Speed
@ -E CoastSets
W
CoastSetSw
tspeed
D
—£ AccelResSw

AccelResSw

Compute target speed

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate code more
compliant with MISRA C and more compatible with Polyspace. This example shows how to use the
Code Generation Advisor to check your model before generating code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.

2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected
objectives - prioritized . The MISRA C:2012 guidelines objective is already selected.

Code Generation Objectives (System target file: ert.tic)

Available objectives Selected objectives - prioritized

Execution efficiency MISRA C:2012 guidelines
ROM efficiency Paolyspace

RAM efficiency
Traceability

Safety precaution 1
Debugging

3 Click Run Selected Checks.

2-13

2 Verification and Validation

2-14

5

The Code Generation Advisor checks whether there are any blocks or configuration settings that
are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this
model, the check for incompatible blocks passes, but there are some configuration settings that
are incompatible with MISRA compliance and Polyspace checking.

ICa Code Generation Advisor
& Check model configuration settings against code generation objectives
0 Check for blocks not recommended for MISRA C:2012
Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.
Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code that is
more compliant with MISRA C and more compatible with Polyspace. This example shows you how to
use the Model Advisor to check your model before generating code.

D W N R

At the bottom of the Code Generation Advisor window, select Model Advisor.
Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
Click Run Selected Checks and review the results.

If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA
modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1

In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

Use the default settings for the tunable parameters and select Build.
After the code is generated, right-click Compute target speed and select Polyspace > Options.

Click the Configure (Polyspace Bug Finder) button. This option allows you to choose more
advanced Polyspace analysis options in the Polyspace configuration window.

Analyze Code and Test Software-in-the-Loop

W Polyspace — O
I File Edit Tools Window Help
I
CIEY]
| | simulinkCruis...Example_config > 4 B
| £ Target & Compiler Coding Standards & Code Metrics
| - Macros
| “ Environment Settings
- Inputs & Stubbing
| - Multitasking [[] 5et checkers by file i
8 Coding Standards & Code Metrics Coding Standards
--Bug Finder Analysis
- Code Prover Verification [] check MISRA C:2004 required-rules View
- Verification Assumptions [] Check MISRA AC AGC OBL-rules View
- Check Behavior ;
Precision Chedk MISRA C:2012 mandatory-required w || View
- Sealing [] Use generated code requirements
--Reporting
Effective boolean types T
--Run Settings tp Type Ell}' = ¥ ﬁ'
- Advanced Settings boolean_T
[] Check SEI CERT-C all View
D Ched: ISO/IEC TS 17961 |all View
[] check custom rules Edit
Code Metrics
Calculate Code Metrics

5 On the same pane, select Calculate Code Metrics. This option turns on code metric calculations
for your generated code.

Save and close the Polyspace configuration window.

From your model, right-click Compute target speed and select Polyspace > Verify > Code
Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and defect
checks. You can see the progress of the analysis in the MATLAB Command Window. Once the
analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment shows you the
results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOn0ff. You can annotate your code or your model to justify

2-15

2 Verification and Validation

every result. But, because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

¥ Polyspace Bug Finder - Compute \\home-00-ah\mhaines\Documents\MATLAB\projects\slexamples\cruise3\results_ Compute\Compute - O X

File Reporting Metrics Tools Window Help

é}ﬂ]l[}Run -Stup‘k&
ﬂhﬁ‘ﬂ_
All results v TeNew [Elv < 5> @ showing 118/118 v J Compute.c X | 4 b B
- - - - - FOSIlneE LONpUTE 1IN HACCEL laioce 1yiyy ~
Family = Information « File “ Class = Function o Severity fdefine Compute IN CRUISE { (uintd T)10)
E-MISRA C:2012 49 . #define Compute IN Coast { (uinte_T)20)
2 Unused code 32 #define Compute IN NO ACTIVE CHILD ((uint2 T)oOU)
4 Code design 3 #defi C te TN OFF N ({ui ':;T) 20)
#define Compute uintg
58 Declarations and definitions 14 . . pube_— " R
= 87 Functions and objects should not be defined with external linkage if they are referenced in only one translation unit. 14 fdaflne Compure IN ON ((uintd _T) 10}
- T Category: Advisory Compute.c Global Scope File Scope #define Compute IN_STANDEY ({uintd_T)20)
L% * Category: Advisory Compute.c Global Scope File Scope #define Compute IN Steady ((uincd T)30)
v ® Category: Advisory Compute.c Global Scope File Scope
!...v * Category: Advisory Compute.c Global Scope File Scope /% Block states (auto storage) */
Category: Advisory Cumpute c Global Scope File Scope DW Compute T EQK_F-JEE DW:
Cateoorv Advisory Global Scope Fle Scope || - B B
=
: R : Category: Advisory Compute C Global Scope File Scope /% Real-time model */
L Category: Advisory Compute.c Global Scope File Scope v 7
H RT MCDEL Compute T Compute M ;
< > - - - T
E RT_MODEL_Compute_T *const Compute M = &Compute M ;
7§ Project Browser Results List
[% Result Details Fax § /% Exported data definition */
Variable trace Compute.c

/* Definition for custom storage class: Global */
= Result Review =
boolean T AccelResSw;

Severity Enter comment here... boolean T Brake;
Status ~ boolean T ?:oastEetSw:
buulean_g CruliseOnOff;
¥ MISRA C:2012 8.7 (Acvisory) (2 uincg_T Speed:
Functions and objects should not be defined with external linkage if they are referenced in only one translation unit. boolean T engaged:
Variable "Compute_M' should have internal linkage. wints szspeed;
/* Definition for custom storage class: Global */
uint8_T zuldrate = 5U;
uincg T ?‘mcdec = 1U;
uintg T ;axtspeed = 90U; v
P s
¥ Configuration |] Result Detaiks | 2] Dashboard |] Source | [Z] output Summary|

afied ye3s A | 4

2 In your model, right-click Compute target speed and select Polyspace > Options.

3 Set the Settings from (Polyspace Bug Finder) option to Project configuration. This option
allows you to choose a subset of MISRA rules in the Polyspace configuration.

Click the Configure button.

5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics pane, select
the check box Check MISRA C:2012 and from the drop-down list, select single-unit-rules.
Now, Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.
The rules Polyspace showed previously were found because the model was analyzed by itself.

When you limited the rules Polyspace checked to the single-unit subset, only two violations were
found.

2-16

Analyze Code and Test Software-in-the-Loop

Display: | Top 10 « defects and violations by |File v | lﬁ Mew

Computed version 1.0 (24/06/2019) - Author: thedore o3
Analysis information: Configuration
Review Scope: All results - View all results in this scope

Code covered by analysis

Files 100% (2/2)

Functions 100% (4/4)

Mo defects found

MISRA (:2012 violations by file
Total: 2 violation(s) found

When this model is integrated with its parent model, you can add the rest of the MISRA C:2012 rules.
Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. This section shows you how to generate a report after the analysis. If you want to
generate a report every time you run an analysis, see Generate report.

1 [f they are not open already, open your results in the Polyspace environment.

2 From the toolbar, select Reporting > Run Report.

3 Select BugFinderSummary as your report type.

4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples

. “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
. “Test Two Simulations for Equivalence” (Simulink Test)
. “Export Test Results and Generate Test Results Reports” (Simulink Test)

2-17

Checking Systems Interactively

3 Checking Systems Interactively

Check Model Compliance by Using the Model Advisor

3-2

Model Advisor Overview

The Model Advisor checks your model or subsystem for modeling conditions and configuration
settings that cause inaccurate or inefficient simulation of the system that the model represents. The
Model Advisor checks can help you verify compliance with industry standards and guidelines. By
using the Model Advisor, you can implement consistent modeling guidelines across projects and
development teams.

Upon completing the analysis of your model, the Model Advisor produces a report that lists the
suboptimal conditions, settings, and modeling techniques and proposes solutions, when applicable.

You can use the Model Advisor to check your model in these ways:

* Interactively run Model Advisor checks
» Configure the Model Advisor to automatically run edit-time checks (requires Simulink Check)

These limitations apply when you use the Model Advisor to check your model. For limitations that
apply to specific checks, see the Capabilities and Limitations section in the check documentation.

+ Ifyou rename a system, you must restart the Model Advisor to check that system.

* In systems that contain a variant subsystem, the Model Advisor checks the active subsystem. To
check both the active and inactive subsystems, set the Advisor.Application property,
AnalyzeVariants, to true.

* Model Advisor does not analyze commented blocks.

* Checks do not search in model blocks or subsystem blocks with the block parameter Read/Write
set to NoReadorWrite. However, on a check-by-check basis, Model Advisor checks do search in
library blocks and masked subsystems.

» Unless specified otherwise in the documentation for a check, the Model Advisor does not analyze
the contents of a Model block. To run checks on referenced models, use instances of the
Advisor.Application class (Simulink Check license required).

Note Software is inherently complex and may not be free of errors. Model Advisor checks might
contain bugs. MathWorks reports known bugs brought to its attention on its Bug Report system at
https://www.mathworks.com/support/bugreports/. The bug reports are an integral part of the
documentation for each release. Examine bug reports for a release as such reports may identify
inconsistencies between the actual behavior of a release you are using and the behavior described in
this documentation.

While applying Model Advisor checks to your model increases the likelihood that your model does not
violate certain modeling standards or guidelines, their application cannot guarantee that the system
being developed will be safe or error-free. It is ultimately your responsibility to verify, using multiple
methods, that the system being developed provides its intended functionality and does not include
unintended functionality.

https://www.mathworks.com/support/bugreports/

Check Model Compliance by Using the Model Advisor

Model Advisor Checks Documentation

The Model Advisor only displays the checks for your installed products. This table provides links to
the product-specific check documentation. A product license may be required to review some of the

documentation.

Product Model Advisor Check Documentation
Simulink “Simulink Checks” (Simulink)

Embedded Coder “Embedded Coder Checks” (Embedded Coder)
AUTOSAR Blockset “MathWorks AUTOSAR Blockset Checks”

(AUTOSAR Blockset)

Simulink Coder™

“Simulink Coder Checks” (Simulink Coder)

HDL Coder™

“HDL Code Advisor Checks” (HDL Coder)

™

Simulink Code Inspector

“Simulink Code Inspector Checks” (Simulink
Code Inspector)

Simulink Check

“D0O-178C/D0O-331 Checks”

“TEC 61508, IEC 62304, ISO 26262, and EN
50128 Checks”

“Model Checks for DO-254 Standard Compliance”
on page 3-50

“High Integrity System Modeling Checks”

“Model Advisor Checks for MAB and JMAAB
Compliance”

“MISRA C:2012 Checks”

“Secure Coding Checks for CERT C, CWE, and
ISO/IEC TS 17961 Standards”

“Model Metrics”

“Clone Detection Checks”

Simulink Design Verifier

“Simulink Design Verifier Checks” (Simulink
Design Verifier)

Simulink Requirements

“Requirements Consistency Checks” (Simulink
Requirements)

Simscape™

Documentation is available only in the Model
Advisor. To review the documentation for the
check, in the Model Advisor, right-click on the
check title and select What's This?

Simulink Control Design™

“Simulink Control Design Checks” (Simulink
Control Design)

3-3

3 Checking Systems Interactively

3-4

Product Model Advisor Check Documentation

IEC Certification Kit “IEC Certification Kit Checks for Bug Reports”

(IEC Certification Kit)

“High Integrity System Modeling Checks”

DO Qualification Kit “DO Qualification Kit Checks for Bug Reports”

(DO Qualification Kit)

“High Integrity System Modeling Checks”

Run Model Advisor Checks and Review Results

You can use the Model Advisor to check your model interactively against modeling standards and
guidelines. The following example uses the sldemo_mdladv model to demonstrate the execution of
the Model Advisor checks using the Model Advisor.

1
2

Open the Model Advisor example model sldemo _mdladv.

To open the Model Advisor, in the Simulink editor, click the Modeling tab and select Model
Advisor. A System Selector — Model Advisor dialog box opens. Select the model or system
that you want to review and click OK.

In the left pane of the Model Advisor, select the checks you want to run on your model:

a You can select the checks by using the By Product or By Task folders. If these folders are
not displayed in the Model Advisor window, open Settings > Preferences and select:
* Show By Product Folder — Displays checks available for each product
* Show By Task Folder — Displays checks related to specific tasks

b You can search for and execute a specific check by enter the Title or TitleID of the check in
the Find: field and click the Find Next button. The Model Advisor searches in check names,
folder names, and analysis descriptions. You can use the Source tab to identify the Title,
TitleID, and location of the MATLAB® source code for each check. To display the Source in
the right pane of the Model Advisor, open Settings > Preferences and select Show Source
Tab.

Click on the folder that contains the checks and, on the right pane of the Model Advisor, select:

* Show report after run to automatically generate and display the report in HTML format
* Run Selected Checks to execute the analysis.

To run a single check, right-click the check in the folder and select Run This Check.
View the results on the Model Advisor User Interface. Common check status results include

* Pass — Check did not identify issues.

* D-Pass —Dependent on configuration parameter or successful execution of another check.
* Warn — Check has identified issues.

* Fail - Check fails to execute.

Fix the warnings or failures as desired. For more information, see “Address Model Check Results”
(Simulink).

matlab:sldemo_mdladv

Check Model Compliance by Using the Model Advisor

7 Use the Exclusions tab to review checks that were marked for exclusion from the analysis. To
display the Exclusions tab in the right pane of the Model Advisor, open Settings > Preferences
and select Show Exclusion tab.

8 View and save the report. For additional information, see “Save and View Model Advisor Check
Reports” (Simulink).

Note If you did not select Show report after run when you executed the checks, you can
generate a report of the results after the analysis is complete. See “Generate Model Advisor
Reports” on page 3-19.

9 If desired, you can reset the status of the checks to the Not Run state. In the left pane, right-click
on Model Advisor and select Reset. This action does not delete the results of the analysis from
the Model Advisor.

Save Analysis Time by Running the Checks from a Previous Analysis

You can save time by consistently running the same set of checks on your model by using the Model
Advisor dashboard. When you use the dashboard, the Model Advisor does not reload the checks
before executing them, saving analysis time.

1 Open the Model Advisor example model sldemo mdladuv.

2 Select Model Advisor > Model Advisor Dashboard. A System Selector — Model Advisor
dialog box opens. Select the model or system that you want to review and click OK.

3 The Model Advisor Dashboard window opens. From this dashboard, you can:

* Click the Run checks button to execute the same checks from the previous analysis

* Click the Switch to standard view button to open the Model Advisor and select different
checks

* Click the Enable Highlighting button to view the highlighted results in the Simulink editor

4 Click the Run checks button to run the same checks on the model that were used in the
previous analysis. If desired, click the Enable Highlighting button.

5 The Model Advisor execute the checks and updates the dashboard to reflect the results of the
analysis, including the number of:

* Passed checks
* Failed checks

* Flagged checks
» Total checks

If you clicked the Enable Highlighting button, the flagged results are highlighted in the model.

- —

matlab:sldemo_mdladv

3 Checking Systems Interactively

3-6

The Model Advisor Highlighting information window opens with a link to the Model Advisor
window. In the Model Advisor window, you can find more information about the check results and
how to fix the warning condition.

(4] Model Aduvisor Highlighting - slderma_mdladsy = =
i) -

£2% Identify unconnected lines, input ports, and output ports Open Results

6 Click the Open Report button to open the entire report in HTML format. Alternatively, you can
select the number link beside the results to filter the report results.

Check Your Model by Using Edit Time Checks

When you enable edit-time checks, the Model Advisor evaluates the model against a subset of Model
Advisor checks. Highlighted blocks in the model editor window alert you to issues in your model. This
enables you to identify modeling issues earlier in the model design process.

You can use one of these methods to enable edit-time checking of your model:

* In the Debug tab, select Diagnostics > Edit-Time Checks
* Inthe Modeling tab, select Model Advisor > Edit-Time Checks

* Ifyou have an Embedded Coder or Simulink Coder license, you can use edit-time checks to
evaluate your model for issues that are specific to code generation. To enable these checks, open
the C Code app and select the C/C++ Code Advisor > Edit-Time Checks.

When edit-time checking is enabled, the Model Advisor highlights blocks in your model that violate
Model Advisor checks.

2 van der Pol Equation

+

Y

MY 1 -u* - 7 =0l %
- x —*D—‘ L /1] “._ﬂ%_“.._..

Mu

Copyright 2004-2013 The MathWoaorks, Inc.

Check Model Compliance by Using the Model Advisor

To review a check violation, click the error or warning icon above the highlighted block. A diagnostics
window opens, which provides information about the modeling issue that violates the Model Advisor
check. When a block violates multiple checks, you can use the diagnostics window to review all
issues.

For each modelling issue, you can use the diagnostics window to:

* Review the cause and explore suggested options for fixing the issue, if any.
* Click the question mark to access detailed documentation about the violated Model Advisor check.
* Ignore the warning and add the block to the exclusion list for that check by clicking Suppress.

(1)
Block name violation

Caused by

» Block name has incorrect characters

oy

Component. Model Advisor {DE..FC'H":S @

In this example, you use edit-time checking to verify the compliance of a Stateflow chart with the
MAB guidelines while you edit.

1 Open a model that contains Stateflow charts. For example, at the command prompt, type: open
sf boiler.

2 To enable the edit-time checking, in the Modeling tab, select Model Advisor > Edit-Time
Checks .

3 Open the Bang-Bang Controller chart by double-clicking it. The Model Advisor highlights
multiple states. Place your cursor over the warning of the Off state to discover the issue.

3 Checking Systems Interactively

3-8

4

Heater ?

Off
entry: turn_boiler(OFF)

Flash) = =
fter(5,
{en: flash_ LED() __,J’H PID.500)

)]

. f

[cold)] |
o [Heater.On.warm()]

On

Select the warning. The Model Advisor indicates that there must be a new line after entry action.
In your model, place your cursor after the en: and press Enter. A new line is added and the
warning is cleared.

View and Customize the Edit-Time Checks in a Model Advisor
Configuration

The Model Advisor checks that are available for edit-time checking are specified by using a Model
Advisor configuration file. You use the Model Advisor Configuration Editor to review and modify
existing configuration files and create new configuration files.

To open a Model Advisor configuration file and review the Model Advisor checks that are enabled for
use in edit-time checking:

1

In the Simulink editor, click the Modeling tab and select Model Advisor > Customize Edit-
Time Checks.

The Model Advisor Configuration Editor opens. The file name for the configuration that is
currently being used by the Model Advisor is displayed at the top of the window. Verify that you
are evaluating the correct configuration file. To open a different configuration file, click Open
and browse to the file you would like to review.

In the Model Advisor Configuration Editor, on the Model Advisor tab, select the Edit time
supported checks option. The filtered list identifies the Model Advisor checks that are
supported for edit-time checking.

Note When a check is included in multiple folders of your Model Advisor hierarchy, for edit-time
checking, the Model Advisor prioritizes the check in your custom folder. If the check is not in

Check Model Compliance by Using the Model Advisor

your custom folder, priority goes to the check in the By Task folder, and finally to the check in
your By Product folder.

In the Model Advisor tab, check the box beside the checks that you want to include in the edit-
time check analysis. Deselect the box beside the checks that you do not want analyzed. For
additional information about using the Model Advisor Configuration Editor to create a custom
Model Advisor configuration, including the customization of edit-time checks, see “Use the Model
Advisor Configuration Editor to Customize the Model Advisor” on page 7-3

See Also

Related Examples

“Run Model Advisor Checks and Review Results” on page 3-4
“Address Model Check Results” (Simulink)

“Generate Model Advisor Reports” on page 3-19

“Save and View Model Advisor Check Reports” (Simulink)
“Find Model Advisor Check IDs” (Simulink)

“Archive and View Results” on page 4-7

“Use the Model Advisor Configuration Editor to Create a Custom Model Advisor Configuration”
on page 7-7

More About

“Check Your Model Using the Model Advisor” (Simulink)
“Exclude Blocks From the Model Advisor Check Analysis” on page 3-10
“Use the Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3

3-9

3 Checking Systems Interactively

Exclude Blocks From the Model Advisor Check Analysis

3-10

Model Advisor Exclusion Overview

To save time during model development and verification, you can limit the scope of a Model Advisor
analysis of your model. You can create a Model Advisor exclusion to exclude blocks in the model from
selected checks. You can exclude all or selected checks from:

* Simulink blocks

+ Stateflow® charts

After you specify the blocks to exclude, Model Advisor uses the exclusion information to exclude
blocks from specified checks during analysis. By default, Model Advisor exclusion information is
stored in the model SLX file. Alternately, you can store the information in an exclusion file.

To view exclusion information for the model, right-click in the model window or right-click a block
and select Model Advisor > Open Model Advisor Exclusion Editor.

The Model Advisor Exclusion Editor dialog box includes the following information for each exclusion.

(2 Maodel Advisar Exclusion Editar @
File
| Store exclusions in model file

Exclusions

todel: sldemo_mdlady

Rationale | Type Value | Check ID(s)

Remove Exclusion| Rerun Model Advisor checks to update results and highlighting

OK] ‘ Cancel ‘ | Help | Apply
Field Description
Rationale A description of why this object is excluded from Model Advisor
checks. The rationale field is the only field that you can edit.
Type Whether a specific block is excluded or all blocks of a given type
are excluded.
Value Name of excluded block or blocks.
Check ID (s) Names of checks for which the block exclusion applies.

Note If you comment out blocks, they are excluded from both simulation and Model Advisor analysis.

Exclude Blocks From the Model Advisor Check Analysis

Save Model Advisor Exclusions in a Model File

To save Model Advisor exclusions to the model . sx file, in the Model Advisor Exclusion Editor dialog
box, select Store exclusions in model file. When you open the model . s1x file, the model contains
the exclusions.

Save Model Advisor Exclusions in Exclusion File

A Model Advisor exclusion file specifies the collection of blocks to exclude from specified checks in an
exclusion file. You can create exclusions and save them in an exclusion file. To use an exclusion file, in
the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model file. The Exclusion
File field is enabled.

The Exclusion File contains the exclusion file name and location associated with the model. You can
use an exclusion file with several models. However, a model can have only one exclusion file.

Unless you specify a different folder, the Model Advisor saves exclusion files in the current folder. The
default name for an exclusion file is <model name> exclusions.xml.

If you create an exclusion file and save your model, you attach the exclusion file to your model. Each

time that you open the model, the blocks and checks specified in the exclusion file are excluded from
the analysis.

Create Model Advisor Exclusions

1 In the model window, right-click a block and select Model Advisor. Select the menu option for
the type of exclusion that you want to do.

To Select Model Advisor >
Exclude the block from all Exclude block only > All Checks
checks.

Exclude all blocks of this type | Exclude all blocks with type <block_type> > All Checks
from all checks.

Exclude the block from * Exclude block only > Select Checks.
selected checks. + In the Check Selector dialog box, select the checks. Click
OK.
Exclude all blocks of this type|* Exclude all blocks with type <block type> > Select
from selected checks. Checks.
* In the Check Selector dialog box, select the checks. Click
OK.

Exclude the block from all Exclude block only > Only failed checks
failed checks. After a Model
Advisor analysis, this option
is available.

Exclude all blocks of this type | Exclude all blocks with type <block_type> > Only failed
from all failed checks. After a |checks

Model Advisor analysis, this
option is available.

3-11

3 Checking Systems Interactively

3-12

To Select Model Advisor >

Exclude the block from a Exclude block only > <name of failed check>
failed check. After a Model
Advisor analysis, this option
is available.

Exclude all blocks of this type | Exclude all blocks with type <block type> > <name of
from a failed check. Aftera |failed check>

Model Advisor analysis, this
option is available.

In the Model Advisor Exclusion Editor dialog box, to:

Store exclusions in model file, select Store exclusions in model file. Click OK or Apply to
create the exclusion.

Save the information to an exclusion file, clear Store exclusions in model file. Click OK or
Apply. If this exclusion is the first one, a Save Exclusion File as dialog box opens. In this
dialog box, click Save to create a exclusion file with the default name
<model name> exclusions.xml in the current folder. Optionally, you can select a different
file name or location.

Optionally, if you want to change the exclusion file name or location:

a
b

o n

In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model file.
In the Model Advisor Exclusion Editor dialog box, select Change.
In the Change Exclusion File dialog box, select Save as.

In the Save Exclusion File dialog box, navigate to the location that you want and enter a file
name. Click Save.

In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create the exclusion
and save the information to an exclusion file.

You can create as many Model Advisor exclusions as you want by right-clicking model blocks and
selecting Model Advisor. Each time that you create an exclusion, the Model Advisor Exclusion Editor
dialog box opens. In the Rationale field, you can specify a reason for excluding blocks or checks from
the Model Advisor analysis. The rationale is useful to others who review your model.

If you create an exclusion file and save your model, you attach the exclusion file to your model. Each
time that you open the model, the blocks and checks specified in the exclusion file are excluded from
the analysis.

Review Model Advisor Exclusions

You can review the exclusions associated with your model. Before or after a Model Advisor analysis,
to view exclusions information:

Right-click in the model window or right-click a block and select Model Advisor > Open Model
Advisor Exclusion Editor. The Model Advisor Exclusion Editor dialog box lists the exclusions for
your model.

In the Modeling tab, open Model Advisor > Preferences. In the Model Advisor Preferences
dialog box, select Show Exclusion tab. In the right pane of the Model Advisor window, select the
Exclusions tab to display checks that are excluded from the Model Advisor analysis.

Exclude Blocks From the Model Advisor Check Analysis

In the Modeling tab, select Model Advisor to open the Model Advisor.

1 On the Model Advisor window toolbar, select Highlighting > Highlight Exclusions. By
default, this menu option is selected.

2
In the Model Advisor window, click Enable highlighting (E}).

After the Model Advisor analysis, you can view exclusion information for individual checks in the:

HTML report. Before the analysis, in the Model Advisor window, make sure that you select the
Show report after run check box.

After you run the checks, in the left pane of the Model Advisor window, the checks that contain
exclusion rules are highlighted in orange. The Model Advisor results include additional
information about the exclusion.

If the check The HTML report and Model Advisor window
Has no exclusions rules Show that no exclusions were applied to this check.
applied.

Does not support Shows that the check does not support exclusions.
exclusions.

Is excluded from a block. |Lists the check exclusion rules.

Manage Exclusions

Save Exclusions in a File

1

In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model file and
click OK or Apply. If this exclusion is the first one, a Save Exclusion File as dialog box opens. In
this dialog box, click Save to create an exclusion file with the default name
<model name> exclusions.xml in the current folder. Optionally, you can select a different file
name or location.

If you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, select Change.
In the Change Exclusion File dialog box, select Save as.

In the Save Exclusion File dialog box, navigate to the location that you want and enter a file
name. Click Save.

d In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create the exclusion
and save the information in an exclusion file.

Load an Exclusion File

To load an existing exclusion file for use with your model:

1

In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model file. Click
Change.

In the Change Exclusion File dialog box, click Load.
Navigate to the exclusion file that you want to use with your model. Select Open.

In the Model Advisor Exclusion Editor dialog box, click OK to associate the exclusion file with
your model.

3-13

3 Checking Systems Interactively

3-14

Detach an Exclusion File

To detach an exclusion file associated with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model file. Click
Change.

In the Change Exclusion File dialog box, click Detach.
In the Model Advisor Exclusion Editor dialog box, click OK.

Remove an Exclusion

1 In the Model Advisor Exclusion Editor dialog box, select the exclusions that you want to remove.
2 (Click Remove Exclusion.

Add a Rationale to an Exclusion

You can add text that describes why you excluded a particular block or blocks from selected checks
during Model Advisor analysis. A description is useful to others who review your model.

1 In the Model Advisor Exclusion Editor dialog box, double-click the Rationale field for the
exclusion.
Delete the existing text.
Add the rationale for excluding this object.

Programmatically Specify an Exclusion File

You can use the MAModelExclusionFile method to programmatically specify the name of an
exclusion file.

1 Use get paramto obtain the model object. For example, for sldemo _mdladv:

mo = get param('sldemo mdladv', 'Object')

2 Use MAModelExclusionFile to specify the name of an exclusion file. For example, to specify
exclusion file my exclusion.xml in S:\work:
mo.MAModelExclusionFile = ['S:\work\', 'my exclusion.xml']

3 Open the Model Advisor Exclusion Editor dialog box. The Exclusion File field contains the
specified exclusion file and path.

Exclude Blocks from Edit Time Checking

While editing a model, you can exclude blocks from Model Advisor analysis. Applicable Model Advisor
exclusions specified through the Simulink editor are also applied during edit-time.

To exclude a block from Model Advisor analysis during edit-time:

From the command prompt, open sldemo fuelsys.

Introduce a warning that is visible in edit-time checking. Add the number 9 to the beginning of
the Engine Speed block name, which results in a violation of Model Advisor check “Check
character usage in block names”.

3 Inthe Modeling tab, select Edit-Time Checks. Multiple blocks are flagged as Model Advisor
check violations.

Exclude Blocks From the Model Advisor Check Analysis

For instance, the Engine Speed block is highlighted and, when you click the warning icon above
the block, you see that the cause of the violation is Block name has incorrect
characters.

Fault-Tolerant Fuel Control System

0

=N Throtie
Command
]
Dashboard thrattle gine spesd o2_out
Thrattle Angle L [T 1] ey ~o
Faull Shiich o | Throtle_Angle Selector

- [
BEngine Speed - - [deg) {ar}
Block name violation
Caused by art— 1 L
. = 5| (L}
3 + Block name has incorrect characters J .
nponent: Model Advisor @5_|;:.|—535 @ B Engne Gas Dynamics

fuel air_fusl_ratio
map
MAP Fault Switeh
n MAP_Selector
Te Controller

4 To exclude the Engine Speed block from Model Advisor analysis, either:

a Right-click the block, select Model Advisor > Exclude block only > Select checks, and
select the check.

b Click the warning icon above the highlighted Engine Speed block. In the diagnostic window,
select Suppress.

The block is excluded from Model Advisor analysis for that check and is not highlighted for check
violation.

Note The list of exclusions is shared between all executions of the Model Advisor checks.

Limit Model Checks by Excluding Gain and Outport Blocks

This example shows how to exclude a Gain block and all Outport blocks from a Model Advisor check
during a Model Advisor analysis. By excluding individual blocks from checks, you limit the scope of
the analysis and might save time during model development and verification.

1 At the MATLAB command line, type sldemo mdladv.

2 From the model window, in the Modeling tab, select Model Advisor to open the Model Advisor.
A System Selector - Model Advisor dialog box opens. Click OK.

3 In the left pane of the Model Advisor window, expand By Product > Simulink. Select the Show
report after run check box to see an HTML report of check results after you run the checks.

4 Note If the By Product folder is not displayed in the Model Advisor window, select Show By
Product Folder from the Settings > Preferences dialog box.

5 Run the selected checks by clicking the Run selected checks button. After the Model Advisor
runs the checks, an HTML report displays the check results in a browser window. The check
Identify unconnected lines, input ports, and output ports triggers a warning.

3-15

matlab:sldemo_mdladv

3 Checking Systems Interactively

6 In the left pane of the Model Advisor window, select the check By Product > Simulink >
Identify unconnected lines, input ports, and output ports.

In the Model Advisor window, click the Enable highlighting button (E}).

* The model window opens. The blocks causing the Identify unconnected lines, input ports,
and output ports check warning are highlighted in yellow.

- —

- —

* The Model Advisor Highlighting window opens with a link to the Model Advisor window. In
the Model Advisor window, you can find more information about the check results and how to
fix the warning condition.

[9] Muodel &dwvisar Highlighting - sldemo_mdladk o & | ===
i) - @

£ 1dentify unconnected lines, input ports, and output ports Cpen Results

8 After reviewing the check results, exclude the Gain2 block from all Model Advisor checks:

a In the model window, right-click the Gain2 block and select Model Advisor > Exclude
block only > All checks .

Model Advisor Exclude all blocks of type Gain 3
Exclude block only 3 All checks

Open Model Advisor Exclusion Editor Only failed checks

Requirements

Select checks ...

»
»
HDL Code Generaticn 3
PLC Code Generation 3

»

Identify unconnected lines, input ports, and outpu...
Linear Analysis

b In the Model Advisor Exclusion Editor dialog box, double-click in the first row of the
Rationale field, and enter Exclude gain block.

3-16

Exclude Blocks From the Model Advisor Check Analysis

1) Model Advisor Exclusion Editor @
File

V| Store exclusions in model file

Exclusions

Model: sldemo_mdlady

Rationale | Type | Walue | Check ID(s)
Exclude gain block Block sldermo_mdladv/G... all checks

Remove Exclusion Rerun Model Advisor checks o update results and highlighting

[oK H Cancel H Help || Apply |

¢ Click OK to store the exclusion in the model file.

After reviewing the check results, exclude all Outport blocks from the Identify unconnected lines,

input ports, and output ports check:

a Right-click the Out4 block and select Model Advisor > Exclude all blocks of type
Outport > Identify unconnected lines, input ports, and output ports.

b In the Model Advisor Exclusion Editor dialog box, click OK to store the exclusion in the
model file.

In the left pane of the Model Advisor window, select By Product > Simulink and then:

* Select the Show report after run check box.
* Click Run Selected Checks to run a Model Advisor analysis.

After the Model Advisor completes the analysis, you can view exclusion information for the
Identify unconnected lines, input ports, and output ports check in the:

* HTML report:

@ Identify unconnected lines, input ports, and output ports
Identify unconnected lines, input ports, and output ports in the model
Passed

There are no unconnected lines, input ports, and output ports in this
model.

Check Exclusions Rules

Exclusion for all blocks of type Outport 1
Exclude gain block 1

* Model Advisor window. In the left pane of the Model Advisor window, select By Product >
Simulink > Identify unconnected lines, input ports, and output ports.

3-17

3 Checking Systems Interactively

3-18

Identify unconnected lines, input porte, and output ports inthe model

Passed
Thete are no uneonnected lines, input ports, and output ports in this model.

Check Exclusions Rules

Exclusion for all blocks of type Cutport 1
Exchude gain block 1

12 Close sldemo_mdladv.

See Also

Related Examples

“Exclude Blocks From Custom Checks” on page 6-47

“Run Model Advisor Checks and Review Results” on page 3-4
“Address Model Check Results” (Simulink)

“Generate Model Advisor Reports” on page 3-19

“Save and View Model Advisor Check Reports” (Simulink)
“Find Model Advisor Check IDs” (Simulink)

“Archive and View Results” on page 4-7

More About

“Check Your Model Using the Model Advisor” (Simulink)

“Exclude Blocks From the Model Advisor Check Analysis” on page 3-10

Generate Model Advisor Reports

Generate Model Advisor Reports

By default, when the Model Advisor runs checks, it generates an HTML report of check results in the
slprj/modeladvisor/model name folder. On Windows® platforms, you can generate Model
Advisor reports in HTML, Adobe® PDF, and Microsoft Word .docx formats.

The beginning of the Model Advisor reports contain the:

* Model name

* Simulink version

* System

* Treat as Referenced Model
* Model version

* Current run

Generate Results Report When Executing Model Advisor Checks

Use these steps to generate a Model Advisor report when executing the checks. This report is in
HTML format.
In the left pane of the Model Advisor, select the checks you want to run.

Click on the folder that contains the checks and, in the right pane of the Model Advisor, select
Show report after run.

3 Click Run Selected Checks. When complete, the Model Advisor automatically opens an HTML
version of the report.

4 To save, right-click on the report and select Save As

Generate Results Report After Executing Model Advisor Checks

To generate a Model Advisor report in Adobe PDF or Microsoft Word:
1 In the left pane of the Model Advisor, select the checks you want to run. Click on the folder that
contains the checks and, in the right pane of the Model Advisor, select Run Selected Checks.

2 When complete, reselect the folder and click Generate Report in the right pane of the Model
Advisor.

3 Inthe Generate Model Advisor Report dialog box:

* Enter the path to the folder where you want to generate the report.
* Provide a file name.
* Use File format to select HTML, PDF, or Word.

4 Click OK. The Model Advisor generates the report and saves it to the designated location. If you
selected View report after generation, the report opens automatically.

Modify Template for Model Advisor Check Results Report

If you have a MATLAB Report Generator license, you can modify the default template that the Model
Advisor uses to generate the report in PDF or Microsoft Word.

3-19

3 Checking Systems Interactively

The default template contains fields that the Model Advisor uses to populate the generated report
with information about the analysis. If you want your Model Advisor report to contain the analysis
information, do not delete the fields. When the Model Advisor generate the report, analysis
information overrides the text that you enter in the template field.

Template Field In generated report, displays
ModelName Model name

SimulinkVersion Simulink version

SystemName System name

TreatAsMd1lRef Whether or not model is treated as a referenced model
ModelVersion Model version

CurrentRun Model Advisor analysis time stamp
PassCount Number of checks that pass
FailCount Number of checks that fail
WarningCount Number of checks that cause a warning
NrunCount Number of checks that did not run
TotalCount Total number of checks

CheckResults Results for each check

This example shows how to add a header to a PDF version of a Model Advisor report.
1 Using Microsoft Word, open the default template matlabroot/toolbox/simulink/
simulink/modeladvisor/resources/templates/default.dotx.

2 Rename and save the template default.dotx to a writable location. For example, save template
default.dotx to C:/work/ma_format/mytemplate.dotx.

3 Inthe template C:/work/ma_format/mytemplate.dotx file, add a header. For example, in the
template header, add the text My Custom Header. Save the template as a Microsoft
Word .dotx file.

My Custom Header

Model Advisor Report — Model name

Simulink version: Simulink varsion Model version: Model version
System: System name Current run: Timestamp

Treat as Referenced Model: I it's treat as referenced model

Run Summary

Pass Fail Warning Mot Run Total
Passed Failed Warning Mot run Total
@ cheack 9 check & chack — cheack nurmber

Results of all checks

4 In the Model Advisor window Report pane, click Generate Report.

3-20

Generate Model Advisor Reports

5 In the Generate Model Advisor Report dialog box:

* Enter the path to the folder where you want to generate the report and provide a file name.
* Set File format to PDF.

* Select View report after generation.
* Set Report template to C:\work\ma format\mytemplate.dotx.
6 Click OK. The Model Advisor generates the report in PDF format with the custom header.

My Custom Header

Model Advisor Report —sldemo_mdladv

Simulink version: 8.5 Model version: 1.78

System: sldemo_mdladv Current run: 13-Mar-2015 10:27:03
Treat as Referenced Model: off

Run Summary

Pass Fail Warning Not Run Total
G 1 9 o A 2] 30 33
See Also

Related Examples
. “Save and View Model Advisor Check Reports” (Simulink)

. “Customize Microsoft Word Component Templates” (MATLAB Report Generator)
. “Run Model Advisor Checks and Review Results” on page 3-4

3-21

3 Checking Systems Interactively

Transform Model to Variant System

3-22

You can use the Model Transformer tool to improve model componentization by replacing qualifying
modeling patterns with Variant Source and Variant Subsystem, Variant Model blocks. The Model
Transformer reports the qualifying modeling patterns. You choose which modeling patterns the tool
replaces with a Variant Source block or Variant Subsystem block.

The Model Transformer can perform these transformations:

» If an If block connects to one or more If Action Subsystems and each one has one outport, replace
this modeling pattern with a subsystem and a Variant Source block.

» If an If block connects to an If Action Subsystem that does not have an outport or has two or more
outports, replace this modeling pattern with a Variant Subsystem block.

» If a Switch Case block connects to one or more Switch Case Action Subsystems and each one has
one outport, replace this modeling pattern with a subsystem and a Variant Source block.

» If a Switch Case block connects to a Switch Case Action Subsystem that does not have an outport
or has two or more outports, replace this modeling pattern with a Variant Subsystem block.

* Replace a Switch block with a Variant Source block.
* Replace a Multiport Switch block that has two or more data ports with a Variant Source block.

For the Model Transformer tool to perform the transformation, the control input to Multiport Switch
or Switch blocks and the inputs to If or Switch Case blocks must be either of the following:

* A Constant block in which the Constant value parameter is a Simulink.Parameter object of
scalar type.

* Constant blocks in which the Constant value parameters are Simulink.Parameter objects of
scalar type and some other combination of blocks that form a supported MATLAB expression. The
MATLAB expressions in “Operators and Operands in Variant Condition Expressions” (Simulink)
are supported except for bitwise operations.

Example Model

This example shows how to use the Model Transformer to transform a model into a variant system.
The example uses the model rtwdemo controlflow opt. This model has three Switch blocks. The
control input to these Switch blocks is the Simulink.Parameter cond. The Model Transformer
dialog box and this example refer to cond as a system constant.

Transform Model to Variant System

Cond
Const
(1) >
>
2 " >
..{ >
» "
>
]

Open the model. In the Command Window, type rtwdemo_controlflow opt.

2 Open the Switchl Block Parameters dialog box. Change the Threshold parameter to 0. The
Threshold parameter must be an integer because after the variant transformation it is part of
the condition expression in the Variant Source block.

3 Repeat step 2 for the Switch blocks Switchl, Switch2, and Switch3.
Save the model to your working folder.

Perform Variant Transform on Example Model
1 In the Apps tab, Open the Model Transformer by selecting Model Transformer. Or, in the

Command Window, type:
mdltransformer('rtwdemo controlflow opt')

2 Select the check “Transform the model to variant system”.

3-23

3 Checking Systems Interactively

2 Model Transformer - twdeme_controlflow_opt — O

Edit Help

e — T

v [F Model Transformer
v 3 Transformations
[=] Transform maodel to variant system Click Run This Check to identify these modeling components:

=] Eliminate data store blocks

Transform model to variant system

Analysis

» System constants that qualify to be part of condition expressions in Variant Source or
Variant Subsystem blocks.
» Blocks that qualify for transformation into Variant Subsystem or Variant Source blocks.

In the Specify system constant cell array field, specify a cell array of character vectors
consisting of Simulink.Parameters. The base workspace must contain their definitions.

Input Parameters

Specify system constant cell array |e.g. system_consts |

Prefix of transformed model name |gen0_ |

Run This Check

Result: [| Not Run

Click Run This Check.

Action
Create a model that replaces the selected blocks with Variant Source or Variant Subsystem
blocks.

Refactor Model

Result:

Help Apply

3 In the Specify system constant cell array field, you can specify a cell array of character
vectors consisting of Simulink.Parameters. The base workspace must contain their
definitions.

4 In the Prefix of transformed model name field, specify a prefix for the model name. If you do
not specify a prefix, the default is gen0.

3-24

Transform Model to Variant System

Select Run This Check. The Model Transformer lists system constants and blocks that qualify to
be part of condition expressions in Variant Source or Variant Subsystem blocks. For the Model
Transformer to list a system constant, it must be a Simulink.Parameter object of scalar type.
For this example, Cond qualifies to part of a condition expression.

If you do not want one of the transformations to occur, you can clear the check box next to it.

Select Refactor Model. The Model Transformer provides a hyperlink to the transformed model
and hyperlinks to the corresponding blocks in the original model and the transformed model.

The transformed model or models are in the folder that has the prefix m2m plus the original model
name. For this example, the folder name is m2m_rtwdemo controlflow opt.

In the original model rtwdemo controlflow opt, right-click one of the Switch blocks. In the
menu, select Model Transformer > Traceability to Transformed Block. In the transformed
model gen® rtwdemo controlflow opt, the corresponding Variant Source block is
highlighted.

In the transformed model gen® rtwdemo controlflow opt, right-click one of the Switch
blocks. In the menu, select Model Transformer > Traceability to Original Block. In the
original model rtwdemo controlflow opt, the corresponding Switch block is highlighted.

Model Transformation Limitations

The Model Transformer tool has these limitations:

In order to run the Model Transformer on a model, you must be able to simulate the model.

If an If Action Subsystem block drives a Merge block, and the Merge block has another inport that
is either unconnected or driven by another conditional subsystem, the Model Transformer does
not add a Variant Source block. This modeling pattern produces a warning and an excluded
candidate message.

The Model Transformer cannot perform a variant transformation for every modeling pattern. This
list contains some exceptions:
* The model contains a protected model reference block.

* A model contains a Variant Source block with the Analyze all choices during update
diagram and generate preprocessor conditionals parameter set to off.

After you run one or more tasks, you cannot rerun the tasks because the Run this Task and Run
All buttons are deactivated. If you want to rerun a task, reset the Model Transformer by right-
clicking Model Transformer and selecting Reset.

Do not change a model in the middle of a transformation. If you want to change the model, close
the Model Transformer, modify the model, and then reopen the Model Transformer.

For the hyperlinks in the Model Transformer to work, you must have the model to which the links
point to open.

See Also

Related Examples

“Variant Systems” (Simulink)

3-25

3 Checking Systems Interactively

Enable Component Reuse by Using Clone Detection

Clones are modeling patterns that have identical block types and connections. The Clone Detector
app identifies clones across referenced model boundaries. You can use the Clone Detector app to
reuse components by creating library blocks from subsystem clones and replacing the clones with
links to those library blocks. You can also use the tool to link to clones in an existing library.

Exact Clones and Similar Clones

There are two types of clones: exact clones and similar clones. Exact clones have identical block
types, connections, and parameter values. Similar clones have identical block types and connections,
but they can have different block parameter values. For example, the value of a Gain block can be
different in similar clones but must be the same in exact clones.

Exact clones and similar clones can have these differences:

* Two clones can have a different sorted order.

* The length of signal lines and the location and size of blocks can be different if the block
connections are the same.

* Blocks and signals can have different names.

To detect only exact clones, for each check in the Identify Modeling Clones tool, set the Maximum
Number of Unmatched Block Parameters to 0. Increasing this parameter value increases the
number of similar clones that the tool can potentially detect.

After you identify clones, you can replace them with links to library blocks. Similar clones link to
masked library subsystems.

Identify Exact and Similar Clones

This example shows how to use the Clone Detector app to identify exact clones and similar clones,
and then replace them with links to library blocks.

1 Open the model ex clone detection. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
ex_clone detection

3-26

Enable Component Reuse by Using Clone Detection

DOuti

ex_clone_detection

Dudd

Product

852

1 Dutt

Qutz

{P—b int outl
@ o
In2
851
o >
in% a2
@ >
Ind Gi3
553
[~
L/'
G4
@ ;
e outt r?\
C?—. iz L{

554

DOud2

555

in1

Save the model to your working folder. A model must be open to access the app.

536

libsubsystem

Outl

D

Cut1

h 4
]

h 4

Out2

ex_clone_library

&57

Caopyright 2017 The MathiWarks Inc.

I

‘Variant Sourcel

On the Apps tab, click Clone Detector. Alternatively, on the MATLAB command line enter:

clonedetection("ex clone detection")

4 The app opens the Clone Detector tab. This example takes you through each section.

3-27

3 Checking Systems Interactively

3-28

L} E @ Find Clones in Systern El D

WView Settings ex_clone_detection_Task1 X Find Replace
R R Clones Clones =
VIEW PREPARE DETECT REFACTOR VERIF

Set Up panes for Clone Detection

The app displays information on multiple panes. You can select three of the panes under the View
menu. The panes are:

* Help. Select to access a help pane that contains an overview of the clone detection workflow.

* Results. Select to view the Clone Detection and Results pane.

* Properties. Select to view the Detected Clone Properties pane.
Set the Parameters for Clone Detection

You can set up the parameters for clone detection by using the Settings drop-down menu.

* Select Ignore differences in > Signal Names to identify and classify clones when the signal
names are different.

» Select Ignore differences in > Block Properties to identify and classify clones when the block
properties are different. For more information about block properties, see “Specify Block
Properties” (Simulink).

* Click Exclude Components to access the Exclude model references, Exclude library Links,
and Exclude inactive and commented out regions options. Enabling the Exclude inactive
and commented out regions option identifies variable number clones because of Variant Source
block in the model. For more information, see “Exclude subsystems and referenced models from
clone detection”. Enabling the Exclude model references and Exclude library Links options
will lead to identification of fewer clones, depending on the model.

* Click Match Patterns with Libraries and select an external library to look for clones. For more
information, see “Identifying and Replacing Clones in Model Libraries” on page 3-31.

¢ The Maximum number of unmatched block parameters is 50 by default. This represents the
number of parameters that can vary among subsystems and still be classified as similar clones.
You may reduce this number to identify and classify fewer similar clones. Setting the value to zero,
will identify only exact clones.

Identify Clones in the Model

1 In the Detect section, in the Find Clones in System tab, enter ex clone detection as the
model to identify clones in. Toggle the pin to access other subsystems to identify clones in.

Find Clones in System

ex_clone_detection ﬂ‘

o e

2 Click Find Clones to identify clones.

Enable Component Reuse by Using Clone Detection

3 The color of the subsystems changes to reflect the similar and exact clones identified. The red
highlighting represents exact clones and the different shades of blue highlighting represent
similar clones.

(O)>——»m outt In1 outt
int
2 2 Outz| In2 Outz| > x
In2
Product
n3 outs
o
552
o »(1)
outt
bl
outt]
Variant Source1

G o—m | Outt
in5
T ot Jl} »
2 &1 d
— Variant Source2

Copyright 2017 The MathWarks Inc.

Analyze the Clone Detection Results

After identifying clones, you can analyze the results of the clone detection and make changes to the
model as necessary. To analyze the results:

1 In the Clone Detection Action and Results panel, on the Logs pane, click the hyperlink.

A new window opens the clone detection results with an integrated report on the identified
clones, the types of clones, the parameters of detection, and the exclusions in the clone
detection.

2 In the Clone Detection Action and Results pane, click the Map Clone Groups to Library
tab.

A list of clone groups are displayed.

3 Click the > symbol next to Exact Clone Group 1 to see all of the subsystems that are exact
clones, the number of blocks, and the block differences. Repeat the same for Similar Clone
Group 1and Similar Clone Group 2.

4 Click the Model Hierarchy tab. Click the hyperlinks to highlight the subsystems that are
present in the model.

5 On the Map Clone Groups to Library tab, expand Similar Clone Group 1 and click the
View Parameter Difference hyperlink.

3-29

3 Checking Systems Interactively

6 On the Detected Clone Properties panel, click the ex clone detection/SS5/G9 hyperlink,
which opens the gain block G9 in the subsystem SS5, where you can access the parameter that
are different from the baseline subsystem.

7 Change value of the gain parameter from A to B and click Find Clones. This will reclassify
Similar Clone Group 1toExact Clone Group 2 because you resolved the difference in
the subsystems and converted it into an exact clone.

8 Under the Refactor Benefits panel, you can consider the percentage of different types of clones
present.

In the Clone Detection Actions and Results pane, in the Map Clone Groups to Library tab,
select the clones you would like to refactor. Select all the clone groups for refactoring to reduce
Detected Clone properties X

Block Difference between clone candidates of clone group:

ex_clone detection/SS5/G9
" Parameters: Gain

Refactor Benefits

Overall [) 225806

Exact () 6.4516

Similar) 16.129

22.5806% of the model reuse. [

Replace Clones

1 You may use the default library name or change the name of the library file and its location on
the Map Clone Groups to Library tab before replacing the clones.

2 C(Click Replace Clones.

3-30

Enable Component Reuse by Using Clone Detection

The model is refactored and the clones are replaced with links to the newLibraryFile library
file in your working directory.

You can restore the model to its original configuration with clones by clicking Restore button
found in the clone detector log that was generated on the Logs tab of the Clone Detector
Actions and Results pane.

Identifying and Replacing Clones in Model Libraries

1

Open the library ex clone library. At the MATLAB command line, enter:
addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))
ex_clone library

Click Settings > Match Patterns with Libraries and select ex clone library.slx. Then
click Find Clones.

Note Identifying and refactoring clones in external libraries must be done separately from the
model. During model refactoring only exact clones within the libraries will be replaced library
links.

Click Replace Clones.

The model is refactored with the exact clones replaced.

Check the Equivalency of the Model

If you have a Simulink Test license, you can click Check Equivalency. A window opens and displays
that the current model has been successfully refactored into an equivalent model.

Equivalency Check - Clone Detector *

o Simulink Test found the replacement
model to be equivalent to the original
N model.

View Results

Close

3-31

3 Checking Systems Interactively

See Also

Related Examples
. “Custom Libraries” (Simulink)

. “Generate Reusable Code from Library Subsystems Shared Across Models” (Simulink Coder)
. Clone Detector

3-32

Improve Model Readability by Eliminating Local Data Store Blocks

Improve Model Readability by Eliminating Local Data Store
Blocks

You can use the Model Transformer tool to improve model readability by replacing Data Store
Memory, Data Store Read, and Data Store Write blocks with either a direct signal line, a Delay block,
or a Merge block. For bus signals, the tool might also add Bus Creator or Bus Selector blocks as part
of the replacement. Replacing these blocks improves model readability by making data dependency
explicit. The Model Transformer creates a model with these replacements. The new model has the
same functionality as the existing model.

The Model Transformer can replace these data stores:

» For signals that are not buses, if a Data Store Read block executes before a Data Store Write
block, the tool replaces these blocks with a Delay block.

» For signals that are not buses, if a Data Store Write block executes before a Data Store Read
block, the tool replaces these blocks with a direct connection.

» For bus signals, if the write to bus elements executes before the read of the bus, the tool replaces
the Data Store Read and Data Store Write blocks with a direct connection and a Bus Creator
block.

» For bus signals, if the write to the bus executes before the read of bus elements, the tool replaces
the Data Store Read and Data Store Write blocks with a direct connection and a Bus Selector
block.

» For conditionally executed subsystems, the tool replaces the Data Store Read and Data Store
Write blocks with a direct connection and a Merge block. For models in which a read/write pair
crosses an If subsystem boundary and the Write block is inside the subsystem, the tool might also
add an Else subsystem block.

The Model Transformer tool eliminates only local data stores that Data Store Memory blocks define.
The tool does not eliminate global data stores. For the Data Store Memory block, on the Signal
Attributes tab in the block parameters dialog box, you must clear the Data store name must
resolve to Simulink signal object parameter.

Example Model

The model ex data store elimination contains the two local data stores: B and A. For data
store B, there are two Data Store Read blocks and one Data Store Write block. For data store A, there
is one Data Store Write block and one Data Store Read block. The red numbers represent the sorted
execution order.

3-33

3 Checking Systems Interactively

This modeling pattern demonstrates how the Model —
Transformer tool can replace Data Store Read blocks B
that execute before Data Store Write blocks with a
Delay block.
Data Store
Memaory
BD-E dioubls
Data Store e 04 fdouble > EE':
Read >+
: Add Data Store
0:73 |double
4 Write
Constant
= >3
Data Store RS
Read1
This modeling pattern demonstrates how the Model —n

Transformer tool can replace Data Store Write blocks A
that execute before Data Store Read blocks with a
direct connection.

Data Store
Memory1

u+5.6 e %E

0
:

I Bias Data Store
Write1
A = » B
Data Store Out2
Read2

Copyright 2017 The MathWorks, Inc.

Replace Data Store Blocks

Identify data store blocks that qualify for replacement. Then, create a model that replaces these
blocks with direct signal lines, Delay blocks, or Merge blocks.

3-34

Improve Model Readability by Eliminating Local Data Store Blocks

Open the model ex data store elimination. At the MATLAB command line, enter:
addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
ex_data_store_elimination

Save the model to your working folder.

In the Simulink Editor, from the Analysis menu, select Refactor Model > Model Transformer.
To open the Model Transformer programmatically, at the MATLAB command prompt, type this
command: mdltransformer('ex data store replacement').

In the Transformations folder, select the Eliminate data store blocks check.
In the Prefix of refactored model field, specify a prefix for the refactored model.

Click the Run This Check button. The top Result table contains hyperlinks to the Data Store
Memory blocks and the corresponding Data Store Read and Data Store Write blocks that qualify
for elimination.

Click the Refactor Model button. The bottom Result table contains a hyperlink to the new
model. The tool creates an m2m ex data store replacement folder. This folder contains the
gen ex data store replacement.slx model.

3-35

3 Checking Systems Interactively

£ Model Transformer - ex_data_store_elimination

Edit Help

 — T

v [Model Transformer

v [Transformations
=] Transform model to variant system
@ Eliminate data store blocks

Eliminate data store blocks
Analysis
Identify data stores that are eligible for elimination. Deselect blocks that you do not want to
eliminate from your model.

Input Parameters

Prefix of refactored model |gen_

Result: Q Passed

Data store memory Data store access Sorted execution
block blocks order

../Data Store Memory

..../Data Store Read 0:2
..../Data Store Write 0:5
.../Data Store Read| 0.6

.....Data Store Memoryl

..../Data Store Writel 0:1
../Data Store Read2 0:8

<

Action

Create a model that replaces the selected blocks with blocks that improve model readability by
making data dependency explicit. The new model name contains the prefix that you specify in the
Prefix of model name field plus the original model name.

Refactor Model

Result:

Transformed model
Click the hyperlink to navigate to the model where selected data store elimination

is completed.

o gen ex_data_store_elimination
Apply

For local data store A, gen_ex_bus struct in code.slx contains a Delay block in place of the
Data Store Write block and a direct signal connection in place of the Data Store Read block. For local
data store B, gen_ex bus struct in code.slx contains a direct signal connection from the Bias

block to Out2.

3-36

Improve Model Readability by Eliminating Local Data Store Blocks

Limitations

The Model Transformer does not replace Data Store Read and Write blocks that meet these
conditions:

» They cross boundaries of conditionally executed subsystems such as Enabled, Triggered, or
Function-Call subsystems and Stateflow Charts.

* They do not complete mutually exclusive branches of If-Action subsystems.

* They cross boundaries of variants.

* They have more than one input or output.

* They access part of an array.

* They execute at different rates.

» They are inside different instances of library subsystems and have a different relative execution
order.

See Also

Related Examples

. “Refactor Models”

. “Data Stores” (Simulink)

. “Data Stores in Generated Code” (Simulink Coder)

3-37

3 Checking Systems Interactively

Improve Efficiency of Simulation by Optimizing Prelookup
Operation of Lookup Table Blocks

3-38

Improve the efficiency of your model simulation by using the Model Transformer tool to identify n-D
Lookup Table blocks that qualify for transformation and replacing them with Interpolation blocks and
shared Prelookup blocks. Eliminating the redundant Prelookup blocks improves the simulation speed
for linear interpolations. The Model Transformer creates a model with these replacements blocks.
This new model has the same functionality as the original model.

The Model Transformer can replace Lookup Table blocks that meet the following conditions:

» The same source drives the Lookup Table blocks.
* The Lookup Table blocks share the same breakpoint specification, values, and data types.

» The Lookup Table blocks share the same algorithm parameters in the block parameters dialog
box.

* The Lookup Table blocks share the same data type for fractions parameters in the block
parameters dialog box.

Example Model

The model mLutOptim contains three Lookup Table blocks: LUT1, LUT2 and LUT3. The blocks are
driven from the same input sources Inl and In2.

Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

[2x1]
u+1 *—P>ut

In1

In2

2-D T(u)

Bias1

—Pu2 Out1
[2x1]
(2) ® LUTA1
2-D T(u)
*—Ppui
———Pplu? QOut2
LUTZ2
2-D T(u)
—p{ u1
P u2 Out3
LUT3

Merge Prelookup Operation

Identify n-D Lookup Table blocks that qualify for transformation and replace them with a single
shared Prelookup block and multiple Interpolation blocks.

1

Open the model mLutOptim. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))mLutOptim
Save the model to your working folder.
In the Simulink Editor, from the Analysis menu, select Refactor Model > Model Transformer.

In the Transformations folder, select the “Transform table lookup into prelookup and
interpolation” check.

Select the Skip Lookup Table (n-D) blocks in the libraries from this transformation option
to avoid replacing Lookup Table blocks that are linked to a library.

In the Prefix of refactored model field, specify a prefix for the new refactored model.

3-39

3 Checking Systems Interactively

7 Click the Run This Check button. The top Result table contains hyperlinks to the Lookup Table

blocks and the corresponding input port indices.
Clear the Candidate Groups that you do not want to transform.

Click the Refactor Model button. The Result table contains a hyperlink to the new model. The

table also contains hyperlinks to the shared Prelookup block and corresponding Interpolation
blocks. Those blocks replaced the original Lookup Table blocks. The tool creates an
m2m_mLUTOptim folder. This folder contains the new gen_ mLUTOptim.s1x model.

2 Model Transformer - mLutOptim

o — T

hd llj Model Transformer
~ (3 Transformations
=] Transform model to variant system
[=] EBliminate data store blocks
=] Transform table lookup into prelockup

The Lookup Table blocks LUT1, LUT2, and LUT3 of gen_mLutOptim. slx have two shared Prelookup
table blocks, LUT1 Prelookup 1 and LUT1 Prelookup 2, one for each data source. There are also
three Interpolation blocks LUT1 InterpND, LUT2 InterpND, and LUT3 InterpND that replace the

Lookup Table blocks.

3-40

Transform table lookup into prelookup and interpolation
Analysis

Click Run This Check to identify Lookup Table blocks that qualify for transformation into a single shared
Prelookup block and multiple Interpolation blocks.

The criteria for modification is:
» The same source drives the Lookup Table blocks.

The Lookup Table blocks share the same break points.
» The Lookup Table blocks share the same algorithm parameters.

Input Parameters

Skip Lookup Table (n-D) blecks in libraries from this transformation.

Prefix of transformed model name | gen2_

Run This Check

Result: [—] Mot Run

Click Run This Check.

Help

=
=]
=]

Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks

- . k o1 2-D T(kf)
X k
(L) w1 o 1 b <D
= 1 —1 K —»(_1)
Bias1 f2 Out1
LUT1_Prelookup_0

LUT1 _InterpND

%q

2x1 K
:2 [2x1] h—'f—H—

In2 k1 2-D T(k,f)
LUT1_Prelookup_1 ’_;:: f1
> k2 —>(_2)
l I Out2

LUT2 InterpND

o1 2-D T(k.)
—p {1
> 2

LUT3_InterpND

Conditions and Limitations

The Model Transformer cannot replace Lookup Table blocks if:

* A Rate Transition block drives the Lookup Table blocks.

* The Lookup Table blocks are commented-out regions and inactive variants.
* The Lookup Table blocks are masked.

» The Output block's data type is set to Inherit:Same as first input.

* The Lookup Table block Interpolation method and Extrapolation method on the Algorithm
pane of the block parameters dialog box is set to Cubic spline.

* The Lookup Table block Input settings on the Algorithm pane of the block parameters dialog
box has Use one input port for all input data selected.

The Lookup Table block Code generation on the Algorithm pane of the block parameters dialog
box has Support tunable table size in code generation selected.

3-41

3 Checking Systems Interactively

The Model Transformer tool does not replace Lookup Table blocks across the boundaries of Atomic
subsystems, Referenced Models, and library-linked blocks.

See Also

Related Examples
. “Refactor Models”

. “Transform table lookup into prelookup and interpolation”

3-42

Model Checks for DO-178C/D0-331 Standard Compliance

Model Checks for DO-178C/D0O-331 Standard Compliance

You can check that your model or subsystem complies with selected aspects of the DO-178C safety
standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor on page 3-4 and run the checks in
By Task > Modeling Standards for DO-178C/D0O-331.

For information on the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards, see Radio Technical Commission for Aeronautics (RTCA).

The table lists the DO-178C/D0O-331 checks.

DO-178C/D0O-331 Check

“Display model version information”

“Check for Discrete-Time Integrator blocks with initial condition uncertainty” (Simulink)

“Check root model Inport block specifications” (Simulink)

“Identify unconnected lines, input ports, and output ports” (Simulink)

“Check usage of tunable parameters in blocks”
“Check for Strong Data Typing with Simulink I/0”
“Check for blocks that have constraints on tunable parameters” (Simulink Coder)

“Identify questionable subsystem settings” (Embedded Coder)

Check bus signals treated as vectors

Check for potentially delayed function-call subsystem return values

Check usage of Merge blocks

“Check definition of Stateflow data”

Check usage of exclusive and default states in state machines
Identify disabled library links

Identify parameterized library links

Identify unresolved library links

Check for model reference configuration mismatch

Check for parameter tunability information ignored for referenced models

Identify requirement links that specify invalid locations within documents

Identify requirement links with missing documents

Identify requirement links with path type inconsistent with preferences

Identify selection-based links having descriptions that do not match their requirements document
text

Check sample times and tasking mode

Check solver for code generation

Check the hardware implementation

Display bug reports for DO Qualification Kit

Display bug reports for Embedded Coder

3-43

https://www.rtca.org/

3 Checking Systems Interactively

DO-178C/D0O-331 Check

Display bug reports for Polyspace Code Prover

Display bug reports for Polyspace Code Prover Server

Display bug reports for Polyspace Bug Finder

Display bug reports for Polyspace Bug Finder Server

Display bug reports for Simulink Code Inspector

Display bug reports for Simulink Report Generator

Display bug reports for Simulink Check

Display bug reports for Simulink Coverage

Display bug reports for Simulink Design Verifier

Display bug reports for Simulink Test

Display bug reports for Simulink Requirements

Display bug reports for Simulink

The following are the High-Integrity System Modeling checks that are applicable for the DO-178C/
DO0-331 standards.

Model Checks for High Integrity Systems Modeling

You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

* By Task > Modeling Standards for DO-178C/D0-331 > High-Integrity Systems

* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems

* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems

* By Task > Modeling Standards for EN 50128 > High-Integrity Systems

* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems

and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling guidelines.
For more information about the High-Integrity Modeling Guidelines, see “High-Integrity System
Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check usage of lookup table blocks “hisl 0033: Usage of Lookup Table blocks”
(Simulink)

3-44

https://www.rtca.org/
https://www.rtca.org/

Model Checks for DO-178C/D0-331 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check for inconsistent vector indexing methods

“hisl 0021: Consistent vector indexing method”
(Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl 0023: Verification of model and subsystem
variants” (Simulink)

Check for root Inports with missing properties

“hisl 0024: Inport interface definition” (Simulink)

Check for Relational Operator blocks that equate
floating-point types

“hisl 0017: Usage of blocks that compute
relational operators (2)” (Simulink)

Check usage of Relational Operator blocks

“hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks

“hisl 0018: Usage of Logical Operator block”
(Simulink)

Check usage of While Iterator blocks

“hisl 0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks

“hisl 0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks

“hisl 0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action Subsystem
blocks

“hisl 0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and Switch Case
Action Subsystem blocks

“hisl 0011: Usage of Switch Case blocks and
Action Subsystem blocks” (Simulink)

Check safety-related optimization settings for
logic signals

“hisl 0045: Configuration Parameters > Math and
Data Types > Implement logic signals as Boolean
data (vs. double)” (Simulink)

Check safety-related block reduction optimization
settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction” (Simulink)

Check safety-related optimization settings for
application lifespan

“hisl 0048: Configuration Parameters > Math and
Data Types > Application lifespan (days)”
(Simulink)

Check safety-related optimization settings for
data initialization

“hisl 0052: Configuration Parameters > Code
Generation > Optimization > Data initialization”
(Simulink)

Check safety-related optimization settings for
data type conversions

“hisl 0053: Configuration Parameters > Code
Generation > Optimization > Remove code from
floating-point to integer conversions that wraps
out-of-range values” (Simulink)

Check safety-related optimization settings for
division arithmetic exceptions

“hisl 0054: Configuration Parameters > Code
Generation > Optimization > Remove code that
protects against division arithmetic exceptions”
(Simulink)

Check safety-related code generation settings for
comments

“hisl 0038: Configuration Parameters > Code
Generation > Comments” (Simulink)

3-45

3 Checking Systems Interactively

3-46

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check safety-related code generation interface
settings

“hisl 0039: Configuration Parameters > Code
Generation > Interface” (Simulink)

Check safety-related code generation settings for
code style

“hisl 0047: Configuration Parameters > Code
Generation > Code Style” (Simulink)

Check safety-related code generation identifier
settings

“hisl 0049: Configuration Parameters > Code
Generation > Identifiers” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Math Function blocks (rem and
reciprocal functions)

“hisl 0002: Usage of Math Function blocks (rem
and reciprocal)” (Simulink)

Check usage of Math Function blocks (log and
log10 functions)

“hisl 0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks

“hisl 0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of input
interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow charts

“hisf 0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf 0013: Usage of transition paths (crossing
parallel state boundaries)” (Simulink)

Check Stateflow charts for ordering of states and
transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined data
objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data typing

“hisf 0015: Strong data typing (casting variables
and parameters in expressions)” (Simulink)

Check usage of shift operations for Stateflow data

“hisf 0064: Shift operations for Stateflow data to
improve code compliance” (Simulink)

Check assignment operations in Stateflow charts

“hisf 0065: Type cast operations in Stateflow to
improve code compliance” (Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance” (Simulink)

Check for Strong Data Typing with Simulink I/O

“hisf 0009: Strong data typing (Simulink and
Stateflow boundary)” (Simulink)

Model Checks for DO-178C/D0-331 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check for MATLAB Function interfaces with
inherited properties

“himl 0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics

“himl 0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation” (Simulink)

Check safety-related model referencing settings

“hisl 0037: Configuration Parameters > Model
Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl 0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl 0040: Configuration Parameters > Solver >
Simulation time” (Simulink)

Check safety-related solver settings for solver
options

“hisl 0041: Configuration Parameters > Solver >
Solver options” (Simulink)

Check safety-related solver settings for tasking
and sample-time

“hisl 0042: Configuration Parameters > Solver >
Tasking and sample time options” (Simulink)

Check safety-related diagnostic settings for
sample time

“hisl 0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for data
used for debugging

“hisl 0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for data
store memory

“hisl 0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for type
conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for signal
connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals” (Simulink)

Check safety-related diagnostic settings for bus
connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses” (Simulink)

Check safety-related diagnostic settings that
apply to function-call connectivity

“hisl 0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls”
(Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl 0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing” (Simulink)

3-47

3 Checking Systems Interactively

3-48

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl 0303: Configuration Parameters >
Diagnostics > Data Validity > Merge blocks”
(Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings for
Loop unrolling threshold

“hisl 0051: Configuration Parameters > Code
Generation > Optimization > Loop unrolling
threshold” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link to
requirements

“hisl 0070: Placement of requirement links in a
model” (Simulink)

Check for inappropriate use of transition paths

“hisf 0014: Usage of transition paths (passing
through states)” (Simulink)

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index signals

“hisl 0022: Data type selection for index signals”
(Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Check if/elseif/else patterns in MATLAB Function
blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB Function
blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object names

“hisl 0063: Length of user-defined object names
to improve MISRA C:2012 compliance”
(Simulink)

Check usage of Merge blocks

“hisl 0015: Usage of Merge blocks” (Simulink)

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB function
headers

“himl 0001: Usage of standardized MATLAB
function headers” (Simulink)

Check usage of relational operators in MATLAB
Function blocks

“himl 0008: MATLAB code relational operator
data types” (Simulink)

Check usage of equality operators in MATLAB
Function blocks

“himl 0009: MATLAB code with equal / not equal
relational operators” (Simulink)

Check usage of logical operators and functions in
MATLAB Function blocks

“himl 0010: MATLAB code with logical operators
and functions” (Simulink)

Model Checks for DO-178C/D0-331 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check type and size of conditional expressions

“himl 0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names” (Simulink)

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks” (Simulink)

Check usage of bitwise operations in Stateflow
charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control variables to
improve MISRA C:2012 compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl 0060: Configuration parameters that
improve MISRA C:2012 compliance” (Simulink)

Check for blocks not recommended for C/C++
production code deployment

Check for blocks not recommended for MISRA
C:2012

“hisl 0020: Blocks not recommended for MISRA
C:2012 compliance” (Simulink)

Check safety-related optimization settings for
specified minimum and maximum values

“hisl 0056: Configuration Parameters > Code
Generation > Optimization > Optimize using the
specified minimum and maximum values”
(Simulink)

See Also

Related Examples

. “Run Model Advisor Checks and Review Results” on page 3-4

3-49

3 Checking Systems Interactively

Model Checks for DO-254 Standard Compliance

You can check that your model or subsystem complies with selected aspects of the DO-254 safety
standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor on page 3-4 and run the checks in
By Task > Modeling Standards for DO-254.

For information on the DO-254 Software Considerations in Airborne Systems and Equipment
Certification and related standards, see Radio Technical Commission for Aeronautics (RTCA).

The table below lists the DO-254 checks.

DO-254 Checks

Display model version information

Identify disabled library links

Identify parameterized library links

Identify unresolved library links

Check for model reference configuration mismatch

Identify requirement links that specify invalid locations within documents

Identify requirement links with missing documents

Identify requirement links with path type inconsistent with preferences

Identify selection-based links having descriptions that do not match their requirements document
text

The following are the High-Integrity System Modeling checks that are applicable for the DO-178C/
DO0-331 standards.

Model Checks for High Integrity Systems Modeling

You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

* By Task > Modeling Standards for DO-254 > High-Integrity Systems

* By Task > Modeling Standards for DO-178C/D0-331 > High-Integrity Systems

* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems

* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems

* By Task > Modeling Standards for EN 50128 > High-Integrity Systems

* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems

and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

3-50

https://www.rtca.org/
https://www.rtca.org/
https://www.rtca.org/

Model Checks for DO-254 Standard Compliance

The table below lists the High Integrity System Model checks and their corresponding modeling
guidelines that support DO-254 Safety Standard. For more information about the High-Integrity
Modeling Guidelines, see “High-Integrity System Modeling” (Simulink).

High Integrity System Model Checks

Applicable High-Integrity System Modeling
Guidelines

Check for inconsistent vector indexing methods

“hisl 0021: Consistent vector indexing method”
(Simulink)

Check for variant blocks with 'Generate
preprocessor conditionals' active

“hisl 0023: Verification of model and subsystem
variants” (Simulink)

Check for root Inports with missing properties

“hisl 0024: Inport interface definition” (Simulink)

Check for Relational Operator blocks that equate
floating-point types

“hisl 0017: Usage of blocks that compute
relational operators (2)” (Simulink)

Check usage of Relational Operator blocks

“hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks

“hisl 0018: Usage of Logical Operator block”
(Simulink)

Check sample time-dependent blocks

“hisl 0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check safety-related block reduction optimization
settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of input
interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf 0013: Usage of transition paths (crossing
parallel state boundaries)” (Simulink)

Check Stateflow charts for ordering of states and
transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined data
objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check usage of shift operations for Stateflow data

“hisf 0064: Shift operations for Stateflow data to
improve code compliance” (Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance” (Simulink)

Check for Strong Data Typing with Simulink I/O

“hisf 0009: Strong data typing (Simulink and
Stateflow boundary)” (Simulink)

3-51

3 Checking Systems Interactively

3-52

High Integrity System Model Checks

Applicable High-Integrity System Modeling
Guidelines

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation” (Simulink)

Check safety-related model referencing settings

“hisl 0037: Configuration Parameters > Model
Referencing” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for type
conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for signal
connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals” (Simulink)

Check safety-related diagnostic settings for bus
connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing” (Simulink)

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link to
requirements

“hisl 0070: Placement of requirement links in a
model” (Simulink)

Check for inappropriate use of transition paths

“hisf 0014: Usage of transition paths (passing
through states)” (Simulink)

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index signals

“hisl 0022: Data type selection for index signals”
(Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Check if/elseif/else patterns in MATLAB Function
blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB Function
blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object names

“hisl 0063: Length of user-defined object names
to improve MISRA C:2012 compliance”
(Simulink)

Model Checks for DO-254 Standard Compliance

High Integrity System Model Checks

Applicable High-Integrity System Modeling
Guidelines

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB function
headers

“himl 0001: Usage of standardized MATLAB
function headers” (Simulink)

Check usage of relational operators in MATLAB
Function blocks

“himl 0008: MATLAB code relational operator
data types” (Simulink)

Check usage of equality operators in MATLAB
Function blocks

“himl 0009: MATLAB code with equal / not equal
relational operators” (Simulink)

Check usage of logical operators and functions in
MATLAB Function blocks

“himl 0010: MATLAB code with logical operators
and functions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names” (Simulink)

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks” (Simulink)

Check usage of bitwise operations in Stateflow
charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control variables to
improve MISRA C:2012 compliance” (Simulink)

HDL Code Advisor Checks

The HDL Code Advisor and the Model Advisor checks in HDL Coder verify and update your Simulink
model or subsystem for compatibility with HDL code generation. The Code Advisor has checks for:

* Model configuration settings

* Ports and Subsystem settings
* Blocks and block settings

* Native Floating Point support
* Industry standard guidelines

The following table lists the HDL Code Advisor checks that are supported by DO-254 Safety

Standards:

HDL Code Advisor Checks

Description

“Check for infinite and continuous sample time
sources” (HDL Coder)

Check source blocks with continuous sample
time.

“Check for unsupported blocks” (HDL Coder)

Check for unsupported blocks for HDL code
generation.

“Check for large matrix operations” (HDL Coder)

Check for large matrix operations.

“Identify unconnected lines, input ports, and
output ports” (Simulink)

Check for unconnected lines or ports.

“Identify disabled library links” (Simulink)

Search model for disabled library links.

3-53

3 Checking Systems Interactively

3-54

HDL Code Advisor Checks

Description

“Identify unresolved library links” (Simulink)

Search the model for unresolved library links,
where the specified library block cannot be
found.

“Check for MATLAB Function block settings”
(HDL Coder)

Check HDL compatible settings for MATLAB
Function blocks.

“Check for Stateflow chart settings” (HDL Coder)

Check HDL compatible settings for Stateflow
Chart blocks.

“Check Delay, Unit Delay and Zero-Order Hold
blocks for rate transition” (Simulink)

Identify Delay, Unit Delay, or Zero-Order Hold
blocks that are used for rate transition. Replace
these blocks with actual Rate Transition blocks.

“Check for unsupported storage class for signal
objects” (HDL Coder)

Check whether signal object storage class is
'"ExportedGlobal' or 'ImportedExtern' or
'"ImportedExternPointer’

“Check VHDL file extension” (HDL Coder)

Check file extensions of VHDL files containing
entities.

“Check naming conventions” (HDL Coder)

Check standard keywords used by EDA tools.

“Check top-level subsystem/port names” (HDL
Coder)

Check top-level module/entity and port names.

“Check module/entity names” (HDL Coder)

Check module/entity names.

“Check signal and port names” (HDL Coder)

Check signal and port name lengths.

“Check package file names” (HDL Coder)

Check file name containing packages.

“Check generics” (HDL Coder)

Check generics at top-level subsystem.

“Check clock, reset, and enable signals” (HDL
Coder)

Check naming convention for clock, reset, and
enable signals.

“Check architecture name” (HDL Coder)

Check VHDL architecture name in the generated
HDL code.

“Check entity and architecture” (HDL Coder)

Check whether the VHDL entity and architecture
are described in the same file.

“Check clock settings” (HDL Coder)

Check constraints on clock signals.

“Check model for foreign characters” (Simulink)

Search the model for unresolved library links,
where the specified library block cannot be
found.

“Check for global reset setting for Xilinx and
Altera devices” (HDL Coder)

Check asynchronous reset setting for Altera®
devices and synchronous reset setting for Xilinx®
devices.

“Check inline configurations setting” (HDL
Coder)

Check whether you have
InlineConfigurations enabled.

“Check algebraic loops” (HDL Coder)

Check model for algebraic loops.

“Check for visualization settings” (HDL Coder)

Check model for display settings: port data types
and sample time color coding.

“Check delay balancing setting” (HDL Coder)

Check Balance Delays is enabled.

Model Checks for DO-254 Standard Compliance

HDL Code Advisor Checks

Description

“Check for safe model parameters” (HDL Coder)

Check for model parameters set up for HDL code
generation.

“Check for double datatypes in the model with
Native Floating Point” (HDL Coder)

Check for double data types in the model.

“Check for Data Type Conversion blocks with
incompatible settings” (HDL Coder)

Check conversion mode of Data Type Conversion
blocks.

“Check for HDL Reciprocal block usage” (HDL
Coder)

Check HDL Reciprocal blocks are not using
floating point types.

“Check for Relational Operator block usage”
(HDL Coder)

Check Relational Operator blocks which use
floating point types have boolean outputs.

“Check for unsupported blocks with Native
Floating Point” (HDL Coder)

Check for unsupported blocks with native
floating-point.

“Check for blocks with nonzero output latency”
(HDL Coder)

Check for blocks that have nonzero output
latency with native floating-point.

“Check blocks with nonzero ulp error” (HDL
Coder)

Check for blocks that have nonzero ulp error with
native floating-point.

“Check for single datatypes in the model” (HDL
Coder)

Check for single data types in the model.

“Check initial conditions of enabled and triggered
subsystems” (HDL Coder)

Check for initial condition of enabled and
triggered subsystems.

“Check for invalid top level subsystem” (HDL
Coder)

Check for subsystems that cannot be at the top
level for HDL code generation.

See Also

Related Examples

. “Run Model Advisor Checks and Review Results” on page 3-4

3-55

3 Checking Systems Interactively

Model Checks for MAB and JMAAB Compliance

3-56

You can use the Model Advisor to verify that your model or subsystem complies with the MathWorks
Advisory Board (MAB) and Japan MATLAB Automotive Advisory Board modeling (JMAAB) guidelines.

Accessing the MAB and JMAAB Model Advisor Checks

To open the Model Advisor, in the Simulink editor, click the Modeling tab and select Model Advisor.
A System Selector — Model Advisor dialog box opens. Select the model or system that you want to
review and click OK.

The MAB checks are available from these Model Advisor folders:

* By Product > Simulink Check > Modeling Standards > MAB Checks
* By Task > Modeling Standards for MAB

The JMAAB checks are available from these Model Advisor folders:

* By Product > Simulink Check > Modeling Standards > JMAAB Checks
* By Task > Modeling Standards for JMAAB

For information on using the Model Advisor, see “Run Model Advisor Checks and Review Results” on
page 3-4.

Modeling Guidelines and Model Advisor Checks for MAB and JMAAB

This table identifies the MathWorks Advisor Board (MAB) guidelines, the corresponding Japan
MathWorksAutomotive Advisor Board (JMAAB) guidelines, and the Model Advisor check that you can
use to verify compliance with these guidelines. Additional information in the tables includes:

*+ MAB Modeling Guideline — Links to the MathWorks Advisory Board (MAB) guideline.

* Corresponding JMAAB Modeling Guideline — Identifies the JMAAB modelling guideline that
corresponds to the MAB guideline. To review the guideline, see Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow on the MathWorks website.

* Model Advisor Check — Provides links to the Model Advisor check that is used to verify
compliance to the modeling guideline.

When applicable, this column clarifies why a guideline does not have a corresponding check:

* No check — Indicates that the guideline can be checked by using a Model Advisor check,
however, the check does not currently exist.

* Not checkable — Indicates that it is not possible to verify compliance to this guideline by using
a Model Advisor check.

MAB Modeling Guideline Corresponding JMAAB Model Advisor Check

Modeling Guideline
(Version 5.0)

(Version 5.1)

ar 0001: Usable characters for |ar 0001 “Check file names”
file names

https://www.mathworks.com/solutions/automotive/standards/maab.html
https://www.mathworks.com/solutions/automotive/standards/maab.html

Model Checks for MAB and JMAAB Compliance

MAB Modeling Guideline Corresponding JMAAB Model Advisor Check
Modeling Guideline
(Version 5.0)
(Version 5.1)

ar 0002: Usable characters for |ar 0002 “Check folder names”

folder names

jc 0241: Length restriction for [jc 0241 “Check length of model file

model file names name”

jc_0242: Length restriction for |jc_0242 “Check length of folder name at

folder names every level of model path”

jc_0201: Usable characters for |jc 0201 “Check Subsystem names”

subsystem names

jc 0231: Usable characters for |jc 0231 “Check character usage in block

block names names”

jc 0211: Usable characters for [jc 0211 “Check port block names”

Inport blocks and Outport block

jc_0243: Length restriction for |jc 0243 “Check length of subsystem

subsystem names names”

jc_0247: Length restriction for |jc_0247 “Check length of block names”

block names

jc 0244: Length restriction for |jc_0244 “Check length of Inport and

Inport and Outport names Outport names”

jc 0222: Usable characters for |jc 0222 “Check usable characters for

signal and bus names signal names and bus names”

jc_0232: Usable characters for |jc 0232 “Check usable characters for

parameter names parameter names”

jc_0245: Length restriction for |jc_0245 “Check length of signal and bus

signal and bus names names”

jc 0246: Length restriction for |jc_0246 “Check length of parameter

parameter name names”

jc_0795: Usable characters for |jc 0795 “Check usable characters for

Stateflow data names Stateflow data names”

jc_0796: Length restriction for |jc 0796 “Check length of Stateflow data

Stateflow data names name”

jc_0791: Duplicate data name |jc_0791 “Check duplication of Simulink

definitions data names”

jc 0792: Unused Data jc 0792 “Check unused data in Simulink
Model”

jc_0700: Unused data in jc 0700 “Check for unused data in

Stateflow block Stateflow Charts”

na 0019: Restricted variable No corresponding JMAAB “Check usage of restricted

names guideline variable names”

3-57

3 Checking Systems Interactively

3-58

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc 0011: Optimization jc 0011 “Check Implement logic signals
parameters for Boolean data as Boolean data (vs. double)”
types

jc_0642: Integer rounding mode |jc 0642 “Check Signed Integer Division
setting Rounding mode”

jc_0806: Detecting incorrect jc_0806 “Check diagnostic settings for

calculation results

incorrect calculation results”

jc 0021: Model diagnostic
settings

No corresponding JMAAB
guideline

“Check model diagnostic
parameters”

na 0004: Simulink model na 0004 “Check for Simulink diagrams

appearance settings using nonstandard display
attributes”

db 0043: Model font and font db 0043 “Check Model font settings”

size

jm_0002: Block resizing jm 0002 No check

db 0142: Position of block db 0142 “Check whether block names

names appear below blocks”

jc 0061: Display of block names |jc_0061 “Check the display attributes of
block names”

db 0140: Display of block db 0140 “Check for nondefault block

parameters attributes”

jc_0603: Model description jc_ 0603 “Check Model Description”

jc_0604: Using block shadow jc 0604 “Check if blocks are shaded in
the model”

db 0081: Unconnected signals |db 0081 “Check for unconnected ports

and blocks and signal lines”

db 0032: Signal line db 0032 “Check signal line connections”

connections

db 0141: Signal flow in db 0141 “Check signal flow in model

Simulink models Check position of signal labels”

jc 0110: Direction of block jc 0110 “Check block orientation”

jc 0171: Clarification of jc 0171 “Check connections between

connections between structural structural subsystems”

subsystems

jc 0602: Consistency in model |jc 0602 “Check for consistency in model

element names element names”

jc_0281: Trigger signal names |jc_0281 “Check trigger signal names”

db 0143: Usable block types in |db 0143 “Check for mixing basic blocks

model hierarchy and subsystems”

db 0144: Use of subsystems db 0144 Not checkable

Model Checks for MAB and JMAAB Compliance

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0653: Delay block layout in
feedback loops

jc 0653

“Check for avoiding algebraic
loops between subsystems”

hd 0001: Prohibited Simulink
sinks

No corresponding JMAAB
guideline

“Check for prohibited sink
blocks”

na 0010: Usage of vector and |na 0010 “Check usage of vector and bus
bus signals signals”

jc_0008: Definition of signal jc 0008 “Check signal line labels”
names

jc_0009: Signal name jc 0009 “Check for propagated signal
propagation labels”

db 0097: Position of labels for |db 0097 “Check signal flow in model

signals and buses

Check position of signal labels”

na 0008: Display of labels on
signals

No corresponding JMAAB
guideline

“Check signal line labels”

na 0009: Entry versus
propagation of signal labels

No corresponding JMAAB
guideline

“Check for propagated signal
labels”

db 0110: Block parameters db 0110 “Check usage of tunable
parameters in blocks”

db 0112: Usage of index db 0112 “Check Indexing Mode”

jc_0645: Parameter definition |jc 0645 “Check if tunable block

for calibration parameters are defined as
named constants”

jc_0641: Sample time setting jc 0641 “Check for sample time setting”

jc_0643: Fixed-point setting jc 0643 “Check usage of fixed-point data
type with non-zero bias”

jc 0644: Type setting jc 0644 “Check type setting by data
objects”

db 0146: Block layout in db 0146 “Check position of conditional

conditional subsystems blocks and iterator blocks”

jc_0640: Initial value settings |jc_0640 “Check undefined initial output

for Outport blocks in conditional for conditional subsystems”

subsystems

jc_0659: Usage restrictions of |jc_0659 “Check usage of Merge block”

signal lines input to Merge

blocks

na 0003: Usage of If blocks na 0003 “Check logical expressions in If
blocks”

jc_0656: Usage of Conditional |jc 0656 “Check default/else case in

Control blocks

Switch Case blocks and If
blocks”

3-59

3 Checking Systems Interactively

3-60

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0657: Retention of output jc 0657 Not checkable

value based on conditional

control flow blocks and Merge

blocks

na 0002: Appropriate usage of |na 0002 “Check fundamental logical and

basic logical and numerical numerical operations”

operations

jc_0121: Usage of add and jc 0121 “Check usage of Sum blocks”

subtraction blocks

jc_0610: Operator order for jc 0610 “Check operator order of

multiplication and division block Product blocks”

jc 0611: Input sign for jc 0611 “Check signs of input signals in

multiplication and division product blocks”

blocks

jc_0794: Division in Simulink jc 0794 No check

jc_0805: Numerical operation |jc_0805 No check

block inputs

jc 0622: Usage of Fcn blocks jc 0622 “Check for parentheses in Fcn
block expressions”

jc 0621: Usage of Logical jc 0621 “Check icon shape of Logical

Operator blocks Operator blocks”

jc 0131: Usage of Relational jc 0131 “Check usage of Relational

Operator blocks Operator blocks”

jc_0800: Comparing floating- jc_0800 “Comparing floating point types

point types in Simulink in Simulink”

jc 0626: Usage of Lookup Table |jc 0626 “Check usage of Lookup Tables”

blocks

jc 0623: Usage of continuous- |jc_0623 “Check usage of Memory and

time Delay blocks and discrete- Unit Delay blocks”

time Delay blocks

jc 0624: Usage of Tapped Delay |jc 0624 “Check for cascaded Unit Delay

blocks/Delay blocks blocks”

jc_0627: Usage of Discrete-Time |jc 0627 “Check usage of Discrete-Time

Integrator blocks Integrator block”

jc 0628: Usage of Saturation jc 0628 “Check usage of the Saturation

blocks blocks”

jc 0651: Implementing a type |jc_0651 “Check output data type of

conversion operation blocks”

db 0042: Usage of Inport and |db 0042 “Check position of Inport and

Outport blocks

Outport blocks”

Model Checks for MAB and JMAAB Compliance

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0081: Inport and Outport jc 0081 “Check display for port blocks”
block icon display

na 0011: Scope of Goto and na 0011 “Check scope of From and Goto
From blocks blocks”

jc_0161: Definition of Data Store [jc 0161 “Check for usage of Data Store
Memory blocks Memory blocks”

jc 0141: Usage of the Switch jc 0141 “Check usage of Switch blocks”
blocks

jc_0650: Block input/output data|jc_0650 “Check input and output

type with switching function datatype for Switch blocks”
jc_0630: Usage of Multiport jc 0630 “Check settings for data ports in
Switch blocks Multiport Switch blocks”

na 0020: Number of inputs to |na 0020 “Check for missing ports in
variant subsystems Variant Subsystems”

na 0036: Default variant na 0036 “Check use of default variants”
na 0037: Use of single variable |na 0037 “Check use of single variable
for variant condition variant conditionals”

db 0122: Stateflow and db 0122 “Check for Strong Data Typing

Simulink interface signals and
parameters

with Simulink I/0”

db 0123: Stateflow port names

No corresponding JMAAB
guideline

“Check for names of Stateflow
ports and associated signals”

db 0125: Stateflow local data |db 0125 “Check definition of Stateflow
data”

db 0126: Defining Stateflow db 0126 “Check definition of Stateflow

events events”

jc_0701: Usable number for first [jc 0701 “Check usable number for first

index index”

jc_0712: Execution timing for |jc 0712 “Check execution timing for

default transition path default transition path”

jc 0722: Local data definition in |jc 0722 “Check scope of data in parallel

parallel states states”

jc 0797: Unconnected jc 0797 “Check for unconnected objects

transitions / states / connective in Stateflow Charts”

junctions

db 0137: States in state db 0137 “Check usage of exclusive and

machines default states in state machines”

jc_0721: Usage of parallel states [jc 0721 “Check for parallel Stateflow

state used for grouping”

3-61

3 Checking Systems Interactively

3-62

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

db 0129: Stateflow transition |db 0129 “Check for Stateflow transition

appearance appearance”

jc_0531: Default transition jc 0531 “Check default transition
placement in Stateflow charts”

jc_0723: Prohibited direct jc 0723 “Check usage of transitions to

transition from external state to external states”

child state

jc 0751: Backtracking jc 0751 “Check for unexpected

prevention in state transition backtracking in state
transitions”

jc_0760: Starting point of jc 0760 “Check starting point of internal

internal transition transition in Stateflow”

jc 0763: Usage of multiple jc 0763 “Check usage of internal

internal transitions transitions in Stateflow states”

jc_0762: Prohibition of state jc 0762 “Check prohibited combination

action and flow chart of state action and flow chart”

combination

db 0132: Transitions in flow db 0132 “Check transition orientations in

charts flow charts”

jc_0773: Unconditional jc 0773 “Check usage of unconditional

transition of a flow chart transitions in flow charts”

jc_0775: Terminating junctions |jc 0775 “Check terminal junctions in

in flow charts Stateflow”

jc_0738: Usage of Stateflow jc 0738 “Check usage of Stateflow

comments comments”

jc_0790: Action language of jc 0790 “Check Stateflow chart action

Chart block language”

jc 0702: Use of named Stateflow|jc 0702 “Check usage of numeric literals

parameters and constants in Stateflow”

jm 0011: Pointers in Stateflow |jm 0011 “Check for pointers in Stateflow
charts”

jc_0491: Reuse of Stateflow data [jc 0491 Not checkable

jm_0012: Usage restrictions of |jm 0012 “Check for usage of events and

events and broadcasting events broadcasting events in Stateflow
charts”

jc 0733: Order of state action |jc 0733 “Check order of state action

types types”

jc_0734: Number of state action |jc 0734 “Check repetition of Action

types

types”

Model Checks for MAB and JMAAB Compliance

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0740: Limitation on use of jc 0740 “Check if state action type 'exit'

exit state action is used in the model”

jc 0741: Timing to update data [jc 0741 “Check updates to variables

used in state chart transition used in state transition

conditions conditions”

jc_0772: Execution order and |jc 0772 “Check usage of transition

transition conditions of conditions in Stateflow

transition lines transitions”

jc_0753: Condition actions and |jc_ 0753 “Check condition actions and

transition actions in Stateflow transition actions in Stateflow”

jc 0711: Division in Stateflow |jc 0711 Not checkable

db 0127: Limitation on MATLAB |db 0127 “Check for MATLAB expressions

commands in Stateflow blocks in Stateflow charts”

jc_0481: Use of hard equality [jc 0481 “Check usage of floating-point

comparisons for floating point expressions in Stateflow charts”

numbers in Stateflow

na 0001: Standard usage of na 0001 “Check Stateflow operators”

Stateflow operators

jc_0655: Prohibition of logical |jc_0655 “Check prohibited comparison

value comparison in Stateflow operation of logical type
signals”

jc 0451: Use of unary minus on |[jc 0451 “Check usage of unary minus

unsigned integers operations in Stateflow charts”

jc_0802: Prohibited use of jc_0802 “Check for implicit type casting

implicit type casting in in Stateflow”

Stateflow

jc 0803: Passing values to jc 0803 Not checkable

library functions

jc 0732: Distinction between jc 0732 “Check uniqueness of Stateflow

state names, data names, and State and Data names”

event names

jc_0730: Unique state name in |jc 0730 “Check uniqueness of State

Stateflow blocks names”

jc_0731: State name format jc 0731 “Check usage of State names”

jc_0501: Format of entriesina |jc_0501 “Check entry formatting in

State block State blocks in Stateflow charts”

jc_0736: Uniform indentations |jc_ 0736 “Check indentation of code in

in Stateflow blocks Stateflow states”

jc 0739: Describing texts inside [jc 0739 “Check for usage of text inside

states

states”

3-63

3 Checking Systems Interactively

3-64

MAB Modeling Guideline
(Version 5.0)

Corresponding JMAAB
Modeling Guideline

(Version 5.1)

Model Advisor Check

jc_0770: Position of transition |jc_0770 “Check placement of Label

label String in Transitions”

jc 0771: Comment position in [jc 0771 “Check position of comments in

transition labels transition labels”

jc_0752: Condition action in jc 0752 “Check usage of parentheses in

transition label Stateflow transitions”

jc_0774: Comments for through |jc 0774 “Check for comments in

transition unconditional transitions”

jc 0511: Return values froma |jc 0511 “Check return value

graphical function assignments in Stateflow
graphical functions”

jc_0804: Prohibited use of jc 0804 No check

recursive calls with graphical

functions

na 0042: Usage of Simulink na 0042 “Check usage of Simulink

functions function in Stateflow”

na 0039: Limitation on Simulink |na 0039 “Check use of Simulink in

functions in Chart blocks

Stateflow charts”

na 0018: Number of nested if/
else and case statement

No corresponding JMAAB
guideline

“Check MATLAB Function
metrics”

na 0025: MATLAB Function
header

No corresponding JMAAB
guideline

No check

na 0024: Shared data in na 0024 “Check MATLAB code for global
MATLAB functions variables”

na 0031: Definition of default |na 0031 “Check usage of enumerated
enumerated value values”

na 0034: MATLAB Function na 0034 “Check input and output

block input/output settings

settings of MATLAB Functions”

na 0016: Source lines of
MATLAB Functions

No corresponding JMAAB
guideline

“Check MATLAB Function
metrics”

na 0017: Number of called
function levels

No corresponding JMAAB
guideline

“Check the number of function
calls in MATLAB Function
blocks”

na 0021: Strings in MATLAB
functions

na 0021

“Check usage of character
vector inside MATLAB Function
block”

na 0022: Recommended
patterns for Switch/Case
statements

No corresponding JMAAB
guideline

“Check usage of recommended
patterns for Switch/Case
statements”

jc 0801: Prohibited use of the /*
and */ comment symbols

jc 0801

“Check for use of C-style
comment symbols”

Model Checks for MAB and JMAAB Compliance

See Also

e “Run Model Advisor Checks and Review Results” (Simulink)

3-65

3 Checking Systems Interactively

Model Checks for High Integrity Systems Modeling

You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

* By Task > Modeling Standards for DO-178C/D0-331 > High-Integrity Systems

* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems

* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems

* By Task > Modeling Standards for EN 50128 > High-Integrity Systems

* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems

and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling guidelines.
For more information about the High-Integrity Modeling Guidelines, see “High-Integrity System
Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check usage of lookup table blocks “hisl 0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing methods | “hisl 0021: Consistent vector indexing method”
(Simulink)

Check for variant blocks with 'Generate “hisl 0023: Verification of model and subsystem

preprocessor conditionals' active variants” (Simulink)

Check for root Inports with missing properties “hisl 0024: Inport interface definition” (Simulink)

Check for Relational Operator blocks that equate |“hisl 0017: Usage of blocks that compute

floating-point types relational operators (2)” (Simulink)

Check usage of Relational Operator blocks “hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks “hisl 0018: Usage of Logical Operator block”
(Simulink)

Check usage of While Iterator blocks “hisl 0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks “hisl 0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks “hisl 0008: Usage of For Iterator Blocks”
(Simulink)

3-66

https://www.rtca.org/
https://www.rtca.org/

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check usage of If blocks and If Action Subsystem
blocks

“hisl 0010: Usage of If blocks and If Action
Subsystem blocks” (Simulink)

Check usage Switch Case blocks and Switch Case
Action Subsystem blocks

“hisl 0011: Usage of Switch Case blocks and
Action Subsystem blocks” (Simulink)

Check safety-related optimization settings for
logic signals

“hisl 0045: Configuration Parameters > Math and
Data Types > Implement logic signals as Boolean
data (vs. double)” (Simulink)

Check safety-related block reduction optimization
settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction” (Simulink)

Check safety-related optimization settings for
application lifespan

“hisl 0048: Configuration Parameters > Math and
Data Types > Application lifespan (days)”
(Simulink)

Check safety-related optimization settings for
data initialization

“hisl 0052: Configuration Parameters > Code
Generation > Optimization > Data initialization”
(Simulink)

Check safety-related optimization settings for
data type conversions

“hisl 0053: Configuration Parameters > Code
Generation > Optimization > Remove code from
floating-point to integer conversions that wraps
out-of-range values” (Simulink)

Check safety-related optimization settings for
division arithmetic exceptions

“hisl 0054: Configuration Parameters > Code
Generation > Optimization > Remove code that
protects against division arithmetic exceptions”
(Simulink)

Check safety-related code generation settings for
comments

“hisl 0038: Configuration Parameters > Code
Generation > Comments” (Simulink)

Check safety-related code generation interface
settings

“hisl 0039: Configuration Parameters > Code
Generation > Interface” (Simulink)

Check safety-related code generation settings for
code style

“hisl 0047: Configuration Parameters > Code
Generation > Code Style” (Simulink)

Check safety-related code generation identifier
settings

“hisl 0049: Configuration Parameters > Code
Generation > Identifiers” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Math Function blocks (rem and
reciprocal functions)

“hisl 0002: Usage of Math Function blocks (rem
and reciprocal)” (Simulink)

Check usage of Math Function blocks (log and
log10 functions)

“hisl 0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks

“hisl 0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of input
interfaces” (Simulink)

3-67

3 Checking Systems Interactively

3-68

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Check state machine type of Stateflow charts

“hisf 0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf 0013: Usage of transition paths (crossing
parallel state boundaries)” (Simulink)

Check Stateflow charts for ordering of states and
transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined data
objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data typing

“hisf 0015: Strong data typing (casting variables
and parameters in expressions)” (Simulink)

Check usage of shift operations for Stateflow data

“hisf 0064: Shift operations for Stateflow data to
improve code compliance” (Simulink)

Check assignment operations in Stateflow charts

“hisf 0065: Type cast operations in Stateflow to
improve code compliance” (Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance” (Simulink)

Check for Strong Data Typing with Simulink I/O

“hisf 0009: Strong data typing (Simulink and
Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl 0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics

“himl 0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation” (Simulink)

Check safety-related model referencing settings

“hisl 0037: Configuration Parameters > Model
Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl 0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl 0040: Configuration Parameters > Solver >
Simulation time” (Simulink)

Check safety-related solver settings for solver
options

“hisl 0041: Configuration Parameters > Solver >
Solver options” (Simulink)

Check safety-related solver settings for tasking
and sample-time

“hisl 0042: Configuration Parameters > Solver >
Tasking and sample time options” (Simulink)

Check safety-related diagnostic settings for
sample time

“hisl 0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

Check safety-related diagnostic settings for data
used for debugging

“hisl 0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for data
store memory

“hisl 0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for type
conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for signal
connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals” (Simulink)

Check safety-related diagnostic settings for bus
connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses” (Simulink)

Check safety-related diagnostic settings that
apply to function-call connectivity

“hisl 0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls”
(Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl 0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing” (Simulink)

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl 0303: Configuration Parameters >
Diagnostics > Data Validity > Merge blocks”
(Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings for
Loop unrolling threshold

“hisl 0051: Configuration Parameters > Code
Generation > Optimization > Loop unrolling
threshold” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link to
requirements

“hisl 0070: Placement of requirement links in a
model” (Simulink)

Check for inappropriate use of transition paths

“hisf 0014: Usage of transition paths (passing
through states)” (Simulink)

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

3-69

3 Checking Systems Interactively

3-70

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check data types for blocks with index signals

“hisl 0022: Data type selection for index signals”
(Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Check if/elseif/else patterns in MATLAB Function
blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB Function
blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object names

“hisl 0063: Length of user-defined object names
to improve MISRA C:2012 compliance”
(Simulink)

Check usage of Merge blocks

“hisl 0015: Usage of Merge blocks” (Simulink)

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB function
headers

“himl 0001: Usage of standardized MATLAB
function headers” (Simulink)

Check usage of relational operators in MATLAB
Function blocks

“himl 0008: MATLAB code relational operator
data types” (Simulink)

Check usage of equality operators in MATLAB
Function blocks

“himl 0009: MATLAB code with equal / not equal
relational operators” (Simulink)

Check usage of logical operators and functions in
MATLAB Function blocks

“himl 0010: MATLAB code with logical operators
and functions” (Simulink)

Check type and size of conditional expressions

“himl 0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names” (Simulink)

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks” (Simulink)

Check usage of bitwise operations in Stateflow
charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control variables to
improve MISRA C:2012 compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl 0060: Configuration parameters that
improve MISRA C:2012 compliance” (Simulink)

Check for blocks not recommended for C/C++
production code deployment

Check for blocks not recommended for MISRA
C:2012

“hisl 0020: Blocks not recommended for MISRA
C:2012 compliance” (Simulink)

Model Checks for High Integrity Systems Modeling

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check safety-related optimization settings for “hisl 0056: Configuration Parameters > Code

specified minimum and maximum values Generation > Optimization > Optimize using the
specified minimum and maximum values”
(Simulink)

3-71

3 Checking Systems Interactively

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN
50128 Standard Compliance

3-72

You can check that your model or subsystem complies with selected aspects of the following safety
standards by running the Model Advisor:

« [EC 61508-3 Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 3: Software requirements

» IEC 62304 Medical device software - Software life cycle processes

* IS0 26262-6 Road vehicles - Functional safety - Part 6: Product development: Software level

* EN 50128 Railway applications - Communications, signalling and processing systems - Software
for railway control and protection systems

To check compliance with these standards, open the Model Advisor on page 3-4 and run the checks in
these folders.

* By Task > Modeling Standards for IEC 61508

* By Task > Modeling Standards for IEC 62304

* By Task > Modeling Standards for ISO 26262

* By Task > Modeling Standards for EN 50128

The table lists the IEC 61508, IEC 62304, ISO 26262, and EN 50128 checks.

IEC 61508, IEC 62304, I1SO 26262, and EN 50128 Checks
Display configuration management data

Display model metrics and complexity report

Check for unconnected objects

Display bug reports for Embedded Coder

Display bug reports for IEC Certification Kit

Display bug reports for Polyspace Code Prover

Display bug reports for Polyspace Code Prover Server

Display bug reports for Polyspace Bug Finder

Display bug reports for Polyspace Bug Finder Server

Display bug reports for Simulink Design Verifier

Display bug reports for Simulink PLC Coder

Display bug reports for Simulink Check

Display bug reports for Simulink Coverage

Display bug reports for Simulink Test

Display bug reports for Simulink Requirements

Display bug reports for AUTOSAR Blockset

Following are the High-Integrity System Modeling checks that are applicable for the IEC 61508, IEC
62304, ISO 26262, and EN 50128 standards.

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

Model Checks for High Integrity Systems Modeling

You can check that your model or subsystem complies with selected aspects of the High Integrity
System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, run the high-integrity checks from
these Model Advisor folders:

* By Task > Modeling Standards for DO-178C/D0-331 > High-Integrity Systems

* By Task > Modeling Standards for IEC 61508 > High-Integrity Systems

* By Task > Modeling Standards for IEC 62304 > High-Integrity Systems

* By Task > Modeling Standards for EN 50128 > High-Integrity Systems

* By Task > Modeling Standards for ISO 26262 > High-Integrity Systems

For information on the High Integrity System Model Software Considerations in Airborne Systems

and Equipment Certification and related standards, see Radio Technical Commission for Aeronautics
(RTCA).

The table lists the High Integrity System Model checks and their corresponding modeling guidelines.
For more information about the High-Integrity Modeling Guidelines, see “High-Integrity System
Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System Modeling
Guidelines

Check usage of lookup table blocks “hisl 0033: Usage of Lookup Table blocks”
(Simulink)

Check for inconsistent vector indexing methods |“hisl 0021: Consistent vector indexing method”
(Simulink)

Check for variant blocks with 'Generate “hisl 0023: Verification of model and subsystem

preprocessor conditionals' active variants” (Simulink)

Check for root Inports with missing properties “hisl 0024: Inport interface definition” (Simulink)

Check for Relational Operator blocks that equate |“hisl 0017: Usage of blocks that compute

floating-point types relational operators (2)” (Simulink)

Check usage of Relational Operator blocks “hisl 0016: Usage of blocks that compute
relational operators” (Simulink)

Check usage of Logical Operator blocks “hisl 0018: Usage of Logical Operator block”
(Simulink)

Check usage of While Iterator blocks “hisl 0006: Usage of While Iterator blocks”
(Simulink)

Check sample time-dependent blocks “hisl 0007: Usage of For Iterator or While
Iterator subsystems” (Simulink)

Check usage of For Iterator blocks “hisl 0008: Usage of For Iterator Blocks”
(Simulink)

Check usage of If blocks and If Action Subsystem |“hisl 0010: Usage of If blocks and If Action

blocks Subsystem blocks” (Simulink)

3-73

https://www.rtca.org/
https://www.rtca.org/

3 Checking Systems Interactively

3-74

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check usage Switch Case blocks and Switch Case
Action Subsystem blocks

“hisl 0011: Usage of Switch Case blocks and
Action Subsystem blocks” (Simulink)

Check safety-related optimization settings for
logic signals

“hisl 0045: Configuration Parameters > Math and
Data Types > Implement logic signals as Boolean
data (vs. double)” (Simulink)

Check safety-related block reduction optimization
settings

“hisl 0046: Configuration Parameters >
Simulation Target > Block reduction” (Simulink)

Check safety-related optimization settings for
application lifespan

“hisl 0048: Configuration Parameters > Math and
Data Types > Application lifespan (days)”
(Simulink)

Check safety-related optimization settings for
data initialization

“hisl 0052: Configuration Parameters > Code
Generation > Optimization > Data initialization”
(Simulink)

Check safety-related optimization settings for
data type conversions

“hisl 0053: Configuration Parameters > Code
Generation > Optimization > Remove code from
floating-point to integer conversions that wraps
out-of-range values” (Simulink)

Check safety-related optimization settings for
division arithmetic exceptions

“hisl 0054: Configuration Parameters > Code
Generation > Optimization > Remove code that
protects against division arithmetic exceptions”
(Simulink)

Check safety-related code generation settings for
comments

“hisl 0038: Configuration Parameters > Code
Generation > Comments” (Simulink)

Check safety-related code generation interface
settings

“hisl 0039: Configuration Parameters > Code
Generation > Interface” (Simulink)

Check safety-related code generation settings for
code style

“hisl 0047: Configuration Parameters > Code
Generation > Code Style” (Simulink)

Check safety-related code generation identifier
settings

“hisl 0049: Configuration Parameters > Code
Generation > Identifiers” (Simulink)

Check usage of Abs blocks

“hisl 0001: Usage of Abs block” (Simulink)

Check usage of Math Function blocks (rem and
reciprocal functions)

“hisl 0002: Usage of Math Function blocks (rem
and reciprocal)” (Simulink)

Check usage of Math Function blocks (log and
log10 functions)

“hisl 0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)”
(Simulink)

Check usage of Assignment blocks

“hisl 0029: Usage of Assignment blocks”
(Simulink)

Check usage of Signal Routing blocks

“hisl 0034: Usage of Signal Routing blocks”
(Simulink)

Check for root Inports with missing range
definitions

“hisl 0025: Design min/max specification of input
interfaces” (Simulink)

Check for root Outports with missing range
definitions

“hisl 0026: Design min/max specification of
output interfaces” (Simulink)

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check state machine type of Stateflow charts

“hisf 0001: State Machine Type” (Simulink)

Check Stateflow charts for transition paths that
cross parallel state boundaries

“hisf 0013: Usage of transition paths (crossing
parallel state boundaries)” (Simulink)

Check Stateflow charts for ordering of states and
transitions

“hisf 0002: User-specified state/transition
execution order” (Simulink)

Check Stateflow debugging options

“hisf 0011: Stateflow debugging settings”
(Simulink)

Check Stateflow charts for uniquely defined data
objects

“hisl 0061: Unique identifiers for clarity”
(Simulink)

Check Stateflow charts for strong data typing

“hisf 0015: Strong data typing (casting variables
and parameters in expressions)” (Simulink)

Check usage of shift operations for Stateflow data

“hisf 0064: Shift operations for Stateflow data to
improve code compliance” (Simulink)

Check assignment operations in Stateflow charts

“hisf 0065: Type cast operations in Stateflow to
improve code compliance” (Simulink)

Check Stateflow charts for unary operators

“hisf 0211: Protect against use of unary
operators in Stateflow Charts to improve code
compliance” (Simulink)

Check for Strong Data Typing with Simulink I/O

“hisf 0009: Strong data typing (Simulink and
Stateflow boundary)” (Simulink)

Check for MATLAB Function interfaces with
inherited properties

“himl 0002: Strong data typing at MATLAB
function boundaries” (Simulink)

Check MATLAB Function metrics

“himl 0003: Limitation of MATLAB function
complexity” (Simulink)

Check MATLAB Code Analyzer messages

“himl 0004: MATLAB Code Analyzer
recommendations for code generation” (Simulink)

Check safety-related model referencing settings

“hisl 0037: Configuration Parameters > Model
Referencing” (Simulink)

Check safety-related diagnostic settings for
solvers

“hisl 0043: Configuration Parameters >
Diagnostics > Solver” (Simulink)

Check safety-related solver settings for
simulation time

“hisl 0040: Configuration Parameters > Solver >
Simulation time” (Simulink)

Check safety-related solver settings for solver
options

“hisl 0041: Configuration Parameters > Solver >
Solver options” (Simulink)

Check safety-related solver settings for tasking
and sample-time

“hisl 0042: Configuration Parameters > Solver >
Tasking and sample time options” (Simulink)

Check safety-related diagnostic settings for
sample time

“hisl 0044: Configuration Parameters >
Diagnostics > Sample Time” (Simulink)

Check safety-related diagnostic settings for
parameters

“hisl 0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters”
(Simulink)

3-75

3 Checking Systems Interactively

3-76

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check safety-related diagnostic settings for data
used for debugging

“hisl 0305: Configuration Parameters >
Diagnostics > Data Validity > Debugging”
(Simulink)

Check safety-related diagnostic settings for data
store memory

“hisl 0013: Usage of data store blocks”
(Simulink)

Check safety-related diagnostic settings for type
conversions

“hisl 0309: Configuration Parameters >
Diagnostics > Type Conversion” (Simulink)

Check safety-related diagnostic settings for signal
connectivity

“hisl 0306: Configuration Parameters >
Diagnostics > Connectivity > Signals” (Simulink)

Check safety-related diagnostic settings for bus
connectivity

“hisl 0307: Configuration Parameters >
Diagnostics > Connectivity > Buses” (Simulink)

Check safety-related diagnostic settings that
apply to function-call connectivity

“hisl 0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls”
(Simulink)

Check safety-related diagnostic settings for
compatibility

“hisl 0301: Configuration Parameters >
Diagnostics > Compatibility” (Simulink)

Check safety-related diagnostic settings for
model initialization

“hisl 0304: Configuration Parameters >
Diagnostics > Data Validity > Model
initialization” (Simulink)

Check safety-related diagnostic settings for
model referencing

“hisl 0310: Configuration Parameters >
Diagnostics > Model Referencing” (Simulink)

Check safety-related diagnostic settings for
saving

“hisl 0036: Configuration Parameters >
Diagnostics > Saving” (Simulink)

Check safety-related diagnostic settings for
Merge blocks

“hisl 0303: Configuration Parameters >
Diagnostics > Data Validity > Merge blocks”
(Simulink)

Check safety-related diagnostic settings for
Stateflow

“hisl 0311: Configuration Parameters >
Diagnostics > Stateflow” (Simulink)

Check safety-related optimization settings for
Loop unrolling threshold

“hisl 0051: Configuration Parameters > Code
Generation > Optimization > Loop unrolling
threshold” (Simulink)

Check model object names

“hisl 0032: Model object names” (Simulink)

Check for model elements that do not link to
requirements

“hisl 0070: Placement of requirement links in a
model” (Simulink)

Check for inappropriate use of transition paths

“hisf 0014: Usage of transition paths (passing
through states)” (Simulink)

Check usage of Bitwise Operator block

“hisl 0019: Usage of bitwise operations”
(Simulink)

Check data types for blocks with index signals

“hisl 0022: Data type selection for index signals”
(Simulink)

Check model file name

“hisl 0031: Model file names” (Simulink)

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

High Integrity System Model Check

Applicable High-Integrity System Modeling
Guidelines

Check if/elseif/else patterns in MATLAB Function
blocks

“himl 0006: MATLAB code if / elseif / else
patterns” (Simulink)

Check switch statements in MATLAB Function
blocks

“himl 0007: MATLAB code switch / case /
otherwise patterns” (Simulink)

Check global variables in graphical functions

“hisl 0062: Global variables in graphical
functions” (Simulink)

Check for length of user-defined object names

“hisl 0063: Length of user-defined object names
to improve MISRA C:2012 compliance”
(Simulink)

Check usage of Merge blocks

“hisl 0015: Usage of Merge blocks” (Simulink)

Check usage of conditionally executed
subsystems

“hisl 0012: Usage of conditionally executed
subsystems” (Simulink)

Check usage of standardized MATLAB function
headers

“himl 0001: Usage of standardized MATLAB
function headers” (Simulink)

Check usage of relational operators in MATLAB
Function blocks

“himl 0008: MATLAB code relational operator
data types” (Simulink)

Check usage of equality operators in MATLAB
Function blocks

“himl 0009: MATLAB code with equal / not equal
relational operators” (Simulink)

Check usage of logical operators and functions in
MATLAB Function blocks

“himl 0010: MATLAB code with logical operators
and functions” (Simulink)

Check type and size of conditional expressions

“himl 0011: Data type and size of condition
expressions” (Simulink)

Check naming of ports in Stateflow charts

“hisf 0016: Stateflow port names” (Simulink)

Check scoping of Stateflow data objects

“hisf 0017: Stateflow data object scoping”
(Simulink)

Check usage of Gain blocks

“hisl 0066: Usage of Gain blocks” (Simulink)

Check usage of bitwise operations in Stateflow
charts

“hisf 0003: Usage of bitwise operations”
(Simulink)

Check data type of loop control variables

“hisl 0102: Data type of loop control variables to
improve MISRA C:2012 compliance” (Simulink)

Check configuration parameters for MISRA
C:2012

“hisl 0060: Configuration parameters that
improve MISRA C:2012 compliance” (Simulink)

Check for blocks not recommended for C/C++
production code deployment

Check for blocks not recommended for MISRA
C:2012

“hisl 0020: Blocks not recommended for MISRA
C:2012 compliance” (Simulink)

Check safety-related optimization settings for
specified minimum and maximum values

“hisl 0056: Configuration Parameters > Code
Generation > Optimization > Optimize using the
specified minimum and maximum values”
(Simulink)

3-77

3 Checking Systems Interactively

See Also

Related Examples
. “Run Model Advisor Checks and Review Results” on page 3-4

3-78

Model Checks for MISRA C:2012 Compliance

Model Checks for MISRA C:2012 Compliance

To check that your model or subsystem has a likelihood of generating MISRA C:2012 compliant code,
open the Model Advisor on page 3-4 and run the checks in By Task > Modeling Guidelines for
MISRA C:2012:

“Check usage of Assignment blocks”

“Check for blocks not recommended for MISRA C:2012”

“Check for blocks not recommended for C/C++ production code deployment”
“Check for unsupported block names”

“Check configuration parameters for MISRA C:2012”

“Check for equality and inequality operations on floating-point values”
“Check for bitwise operations on signed integers”

“Check for recursive function calls”

“Check for switch case expressions without a default case”

“Check for missing error ports for AUTOSAR receiver interfaces”
“Check for missing const qualifiers in model functions”

“Check integer word length”

“Check bus object names that are used as bus element names”

See Also

Related Examples

“Run Model Advisor Checks and Review Results” on page 3-4

3-79

3 Checking Systems Interactively

Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS
17961 Standards)

3-80

To check that your code complies with the CERT C, CWE, and ISO/IEC TS 17961 (Embedded Coder)
secure coding standards, open the Model Advisor on page 3-4 and run the checks in By Task >
Modeling Guidelines for Secure Coding (CERT C, CWE, ISO/IEC TS 17961):

* “Check configuration parameters for secure coding standards”

* “Check for blocks not recommended for C/C++ production code deployment”

* “Check for blocks not recommended for secure coding standards”

* “Check usage of Assignment blocks”

* “Check for switch case expressions without a default case”

* “Check for bitwise operations on signed integers”

* “Check for equality and inequality operations on floating-point values”

* “Check integer word length”

* “Detect Dead Logic”

» “Detect Integer Overflow”

* “Detect Division by Zero”

* “Detect Out Of Bound Array Access”

* “Detect Specified Minimum and Maximum Value Violations”

See Also

Related Examples
. “Run Model Advisor Checks and Review Results” on page 3-4

Model Checks for Requirements Links

Model Checks for Requirements Links

To check that every requirements link in your model has a valid target in a requirements document,
from the Simulink Toolstrip, open the Requirements app. Click Check Consistency to run the
Requirements Consistency Checking checks in the Model Advisor.

In the Model Advisor, the requirements consistency checks are available in:

* By Product > Simulink Requirements > Requirements Consistency
* By Task > Requirements Consistency Checking

For more information about these Model Advisor checks, see “Requirements Consistency Checks”
(Simulink Requirements)

When modeling for high-integrity systems, to check that model elements link to requirement
documents, run Check for model elements that do not link to requirements.

See Also

Related Examples

. “Validate Requirements Links in a Model” (Simulink Requirements)
. “Run Model Advisor Checks and Review Results” on page 3-4
. “High-Integrity System Modeling” (Simulink)

3-81

Check Systems Programmatically

4 cCheck Systems Programmatically

Checking Systems Programmatically

4-2

The Simulink Check product includes a programmable interface for scripting and for command-line
interaction with the Model Advisor. Using this interface, you can:

Create scripts and functions for distribution that check one or more systems using the Model
Advisor.

Run the Model Advisor on multiple systems in parallel on multicore machines (requires a Parallel
Computing Toolbox™ license).

Check one or more systems using the Model Advisor from the command line.
Archive results for reviewing at a later time.

To define the workflow for running multiple checks on systems:

1

Specify a list of checks to run. Do one of the following:

* Create a Model Advisor configuration file that includes only the checks that you want to run.
* Create a list of check IDs.

Specify a list of systems to check.

Run the Model Advisor checks on the list of systems using the ModelAdvisor. run function.
Archive and review the results of the run.

See Also
ModelAdvisor. run

Related Examples

“Archive and View Results” on page 4-7

More About

“Use the Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3

Create a Function for Checking Multiple Systems

Create a Function for Checking Multiple Systems

You can create a function to programmatically run multiple checks on a model. The function returns
the number of failures and warnings.

In the MATLAB window, select New > Function.

Save the file as run_configuration.m.

In the function, right-click on untitled and select Replace function name by file name. The
function name is updated to run_configuration.

function [outputArgl, outputArg2] = run_configuration(inputArgl,inputArg2)
4 Define the output and input arguments. For the output arguments, press Shift-Enter after
entering each value to automatically update inlining instances in the function.
* output Arglas fail
* output Arg2aswarn
* inputArgl, inputArg2to SyslList

function [fail, warn] = run_configuration(SysList)
fail = inputArgl;
warn = inputArg2;

5 Inside the function, specify the list of checks to run using the example Model Advisor
configuration file:

fileName = 'slvnvdemo _mdladv_config.mat';
6 Call the ModelAdvisor. run function:

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName);
7 Determine the number of checks that return warnings and failures:

fail
warn

0;
0;

for i=1:length(SysResultObjArray)
fail = fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;

The function should now look like this:

end
function [fail, warn] = run configuration(SysList)

%RUN CONFIGURATION Check systems with Model Advisor
Check systems given as input and return number of warnings and

o° o°

failures.
fail = 0;
warn = 0;

ModelAdvisor.setDefaultConfiguration('C:\temp\ma configuration standards.json');
SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName);
for i=1:length(SysResultObjArray)
fail = fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;
end

end
function

4-3

4 Check Systems Programmatically

Save the function.

Test the function. In the MATLAB Command Window, run run_configuration.m on the
sldemo_auto climatecontrol/Heater Control subsystem:

[failures, warnings] = run_configuration(...
'sldemo_auto climatecontrol/Heater Control');

10 Review the results. Click the Summary Report link to open the Model Advisor Command-Line
Summary report.

See Also
ModelAdvisor. run

Related Examples

. “Create a Function for Checking Multiple Systems in Parallel” on page 4-5

4-4

Create a Function for Checking Multiple Systems in Parallel

Create a Function for Checking Multiple Systems in Parallel

Checking multiple systems in parallel reduces the processing time required by the Model Advisor to
check multiple systems. If you have the Parallel Computing Toolbox license, you can check multiple
systems in parallel on a multicore host machine.

The Parallel Computing Toolbox does not support 32-bit Windows machines.

Each parallel process runs checks on one model at a time. In parallel mode, load the model data from
the model workspace or data dictionary. The Model Advisor in parallel mode does not support model
data in the base workspace.

In the MATLAB window, select New > Function.

Save the file as run_fast configuration.m.

In the function, right-click on untitled and select Replace function name by file name. The
function name is updated to run_fast configuration

function [outputArgl, outputArg2] = run_fast configuration(inputArgl,inputArg2)
4 Define the output and input arguments. For the output arguments, press Shift-Enter after
entering each value to automatically update all instances in the function.
* output Arglas fail
* output Arg2aswarn
* inputArgl, inputArg2to SysList

function [fail, warn] = run_fast configuration(SysList)
fail = inputArgl;
warn = inputArg2;

5 Inside the function, specify the list of checks to run using the example Model Advisor
configuration file:

fileName = 'slvnvdemo_mdladv_config.mat';

6 Call the ModelAdvisor. run function and set 'ParallelMode' to 'On'.

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName, ...
'ParallelMode','On');

7 Determine the number of checks that return warnings and failures:

fail
warn

0;
0;

for i=1:length(SysResultObjArray)
fail fail + SysResultObjArray{i}.numFail;
warn = warn + SysResultObjArray{i}.numWarn;

The function should now look like this:

function [fail, warn] = run fast configuration(SysList)

%RUN_FAST CONFIGURATION Check systems in parallel with Model Advisor
% Return number of warnings and failures.
fileName = 'slvnvdemo mdladv config.mat';
fail=0;

warn=0;

SysResultObjArray = ModelAdvisor.run(SysList, 'Configuration', fileName, ...
'ParallelMode', 'On');

for i=1:length(SysResultObjArray)
fail = fail + SysResultObjArray{i}.numFail;

4 cCheck Systems Programmatically

4-6

warn = warn + SysResultObjArray{i}.numWarn;
end

end
Save the function.
Test the function. In the MATLAB Command Window, create a list of systems:

SysList={'sldemo _auto climatecontrol/Heater Control',...
'sldemo_auto climatecontrol/AC Control', 'rtwdemo iec615608'};

10 Run run_fast configuration on the list of systems:
[failures, warnings] = run fast configuration(SysList);

11 Review the results. Click the Summary Report link to open the Model Advisor Command-Line
Summary report.

See Also
ModelAdvisor. run

Related Examples
. “Create a Function for Checking Multiple Systems” on page 4-3

Archive and View Results

Archive and View Results

Archive Results

After you run the Model Advisor programmatically, you can archive the results. The

ModelAdvisor. run function returns a cell array of ModelAdvisor.SystemResult objects, one for
each system run. If you save the objects, you can use them to view the results at a later time without
rerunning the Model Advisor.

View Results in Command Window

When you run the Model Advisor programmatically, the system-level results of the run are displayed
in the Command Window. For example:

Systems passed: 0 of 1

Systems with warnings: 1 of 1

Systems failed: 0 of 1
Summary Report

The Summary Report link provides access to the Model Advisor Command-Line Summary report.
You can review additional results in the Command Window by calling the DisplayResults
parameter when you run the Model Advisor. For example, run the Model Advisor as follows:

SysResultObjArray = ModelAdvisor.run('sldemo auto climatecontrol/Heater Control',...
'Configuration', 'slvnvdemo mdladv_config.mat', 'DisplayResults', 'Details');

The results displayed in the Command Window are:

Running Model Advisor
Running Model Advisor on sldemo_auto climatecontrol/Heater Control

Model Advisor run: 26-Jun-2019 15:01:13
Configuration: slvnvdemo mdladv_config.mat
System: sldemo auto climatecontrol/Heater Control
System version: 10

Created by: The MathWorks, Inc.

(1) Warning: Check model diagnostic parameters [check ID: mathworks.maab.jc 0021]

Summary : Pass Warning Fail Not Run
3 1 0 0

Systems passed: 0 of 1
Systems with warnings: 1 of 1

Systems failed: 0 of 1
Summary Report

To display the results in the Command Window after loading an object, use the viewReport function.

View Results in Model Advisor Command-Line Summary Report

When you run the Model Advisor programmatically, a Summary Report link is displayed in the
Command Window. Clicking this link opens the Model Advisor Command-Line Summary report. The
following graphic is the report that the Model Advisor generates for run_configuration.

4 cCheck Systems Programmatically

-

@& Model Advisor Command-Line Summary Report - C\matlabwork [= |i_IEI||_23|
File Edit View Go Debug Desktop Window Help k.
4w 3 & 88 | Leocation:| C/matlabwork/summaryReport.htm -

Simulink version: 7.7

Configuration file:
C:matlabwork'slvnvdemo_mdladv_config.mat

Run Summary.

Model Advisor Command-Line Summary

Current run: 09-Febh-2011
15:29:49

Number of systems: 1

Systems passed 0 of1
Systemns with warnings 1of1
Systems failed 0 of1
Systems Run
E=l Model Advi

System @rassed @Failed | BwWarnings Rﬂzt 2 ;Epu:tlsur
sldemn auto_climatecontrol/Heater 5 0 5 0 Report. himl
Contral =PI

4-8

To view the Model Advisor Command-Line Summary report after loading an object, use the
summaryReport function.

View Results in Model Advisor GUI

In the Model Advisor window, you can view the results of running the Model Advisor
programmatically using the viewReport function. In the Model Advisor window, you can review
results, run checks, fix warnings and failures, and view and save Model Advisor reports.

Tip To fix warnings and failures, you must rerun the check in the Model Advisor window.

View Model Advisor Report

For a single system or check, you can view the same Model Advisor report that you access from the
Model Advisor GUI.

To view the Model Advisor report for a system:

* Open the Model Advisor Command-Line Summary report. In the Systems Run table, click the link
for the Model Advisor report.

* Use the viewReport function.
To view individual check results:

* Inthe Command Window, generate a detailed report using the viewReport function with the
DisplayResults parameter set to Details, and then click the Pass, Warning, or Fail link for the
check. The Model Advisor report for the check opens.

Archive and View Results

* Use the view function.

See Also
ModelAdvisor.run | ModelAdvisor.summaryReport | view | viewReport

Related Examples

. “Archive and View Model Advisor Run Results” on page 4-10

. “Create a Function for Checking Multiple Systems” on page 4-3

. “Create a Function for Checking Multiple Systems in Parallel” on page 4-5

More About

. “Run Model Advisor Checks and Review Results” on page 3-4
. “Address Model Check Results” (Simulink)

. “Generate Model Advisor Reports” on page 3-19

. “Save and View Model Advisor Check Reports” (Simulink)

. “Find Model Advisor Check IDs” (Simulink)

. “Run Model Advisor Checks in Background” (Simulink)

. “Save and Load Process for Objects” (MATLAB)

4-9

4 cCheck Systems Programmatically

Archive and View Model Advisor Run Results

4-10

This example guides you through archiving the results of running checks so that you can review them
at a later time. To simulate archiving and reviewing, the steps in the tutorial detail how to save the
results, clear out the MATLAB workspace (simulates shutting down MATLAB), and then load and
review the results.

1 Call the ModelAdvisor. run function:

SysResultObjArray = ModelAdvisor.run({'sldemo auto climatecontrol/Heater Control'},...
'Configuration', 'slvnvdemo_mdladv_config.mat');

2 Save the SystResulObj for use at a later time:

save my model advisor run SysResultObjArray
3 Clear the workspace to simulate viewing the results at a different time:

clear

4 Ioad the results of the Model Advisor run:

load my model advisor run SysResultObjArray
5 View the results in the Model Advisor:

viewReport(SysResultObjArray{1}, 'MA")

See Also
ModelAdvisor. run

Related Examples

. “Archive and View Results” on page 4-7

Model Metrics

5 Model Metrics

Collect and Explore Metric Data by Using the Metrics
Dashboard

5-2

The Metrics Dashboard collects and integrates quality metric data from multiple Model-Based Design
tools to provide you with an assessment of your project quality status. To open the dashboard:

* In the Apps gallery, click Metrics Dashboard.
* At the command line, enter metricsdashboard(system). The system can be either a model
name or a block path to a subsystem. The system cannot be a Configurable Subsystem block.

You can collect metric data by using the dashboard or programmatically by using the
slmetric.Engine API. When you open the dashboard, if you have previously collected metric data
for a particular model, the dashboard populates from existing data in the database.

If you want to use the dashboard to collect (or recollect) metric data, in the toolbar:

* Use the Options menu to specify whether to include model references and libraries in the data
collection.

* Click All Metrics. If you do not want to collect metrics that require compiling the model, click
Non-Compile Metrics.

The Metrics Dashboard provides the system name and a data collection timestamp. If there were
issues during data collection, click the alert icon to see warnings.

You can only have one dashboard open per model or subsystem at once. Also, if a dashboard is open
for a model or subsystem, and you programmatically collect metric data for that model or subsystem,
the dashboard automatically closes.

Collect and Explore Metric Data by Using the Metrics Dashboard

4\ Metrics Dashboard
METRICS DASHBOARD

O & b &

Open Options MNon-Compile All Metrics ||)
- - Metrics

FILE RUN

vdp
Created by: The MathWorks, Inc. Revision: 1.9
Collected on: 1/17/2020, 11:45:15 AM

MODELING GUIDELINE COMPLIANCE

> D

89.0% 93.1%
High Integrity MAAB
31 29
> >
High Integrity MAAB

Model Advisor Check Issues

Code Analyzer Diagnostic
Warnings Warnings

THRESHOLDS

SIZE
13 1 Models
Blocks 2 Files

@ ARCHITECTURE

Potential Reuse

Model Complexity I
Blocks II

Stateflow LOC

MATLAB LOC

0 MATLAB LOC

0 stateflow LOC

40%

40

=

=

100

0|:|2

System Interface

80% 100%

You can only have one dashboard open per model or subsystem at once. Also, if a dashboard is open
for a model or subsystem, and you programmatically collect metric data for that model or subsystem,
the dashboard automatically closes.

Metrics Dashboard Widgets

The Metrics Dashboard contains widgets that provide visualization of metric data in these categories:
size, modeling guideline compliance, and architecture. To explore the data in more detail, click an
individual metric widget. For your selected metric, a table displays the value, aggregated value, and
measures (if applicable) at the model component level. From the table, the dashboard provides
traceability and hyperlinks to the data source so that you can get detailed results and recommended

actions for troubleshooting issues. When exploring drill-in data, note that:

* The Metrics Dashboard calculates metric data per component. A component can be a model,
subsystem, chart, or MATLAB Function block.

5-3

5

Model Metrics

* You can view results in either a Tree or Table view. For the High Integrity and MAB compliance
widgets, you can also choose a Grid view. To view highlighted results, in the grid view, click a cell.

» To sort the results by value or aggregated value, click the corresponding value column header.

* For metrics other than the High Integrity and MAB compliance widgets, you can filter results. To
filter results, in the Table view, select the context menu on the right side of the TYPE,
COMPONENT, and PATH column headers. From the TYPE menu, select applicable components.
From the COMPONENT and PATH menus, type a component name or path in the search bar. The
Metrics Dashboard saves the filters for a widget, so you can view metric details for other widgets
and return to the filtered results.

* In the Table and Tree view, a value or aggregated value of n/a indicates that results are not
available for that component. If the value and aggregated value are n/a, the Table view does not
list the component. The Tree view does list such a component. For the Stateflow LOC widget, the
image shows the comparison.

r-lEEgliS DETALS METRICS DETAILS
= RN E|
Dashboard | Dashboard | | Table ree
VIEW VISUALIZATIONS 3 VIEW [WISUALIZATIONS | a
Effective lines of code for Statefiow blocks 2 Effective lines of code for Stateflow blocks (&
Effective number of lines of code for Statefiow blocks Effective number of lines of code for Stateflow blocks
COMPONENT TYPE STATEFLOW LOC STATEFLOW LOC
b LIl ok o TYPE COMPO PATH Q7Y | STATEFLOW LOC STATEFLOW LOC
Engine Subsysten f I
i il i i Model sf_car 1 nia 17
LY ick el I I
arice Sl e 2 Chart shift_logic |, hfilogic 1 |17 17
+ fransmission Subsystem nfa nia
= framsmission rati Subsyslem nia nfa
Look-Up Table MATLAB function | n/a nfa
Tarque Converler Subsystem nia nfa
¥ shift_logic Chart i7 iT
+ selection_siate calc_th | Subsystem nla nia

Loak-Up MATLAB function | n/a nfa -

* The metric data that is collected quantifies the overall system, including instances of the same
model. For aggregated values, the metric engine aggregates data from each instance of a model in
the referencing hierarchy. For example, if the same model is referenced twice in the system
hierarchy, its block count contributes twice to the overall system block count.

» If a subsystem, chart, or MATLAB Function block uses a parameter or is flagged for an issue, then
the parameter count or issue count is increased for the parent component.

* The Metrics Dashboard analyzes variants.
For custom metrics, you can specify widgets to add to the dashboard. You can also remove widgets.

To learn more about customizing the Metrics Dashboard, see “Customize Metrics Dashboard Layout
and Functionality” on page 5-39.

Size

This table lists the Metrics Dashboard widgets that provide an overall picture of the size of your
system. When you drill into a widget, this table also lists the detailed information available.

Collect and Explore Metric Data by Using the Metrics Dashboard

Widget Metric Drill-In Data

Blocks Simulink block count Number of blocks by component
(mathworks.metrics.SimulinkBlockC
ount)

Models Model file count Number of model files by component
(mathworks.metrics.ModelFileCount)

Files File count Number of model and library files by
(mathworks.metrics.FileCount) component

MATLAB LOC Effective lines of MATLAB code Effective lines of code, in MATLAB Function

(mathworks.metrics.MatlabLOCCount) [block and MATLAB functions in Stateflow,
by component

Stateflow LOC Effective lines of code for Stateflow Effective lines of code for Stateflow blocks
blocks by component
(mathworks.metrics.StateflowLOCCo
unt)

System Interface |+ Input and Output count * Number of inputs and outputs by

(mathworks.metrics.ExplicitIOCo component (includes trigger ports)
unt) .

Number of parameters by component

* Parameter count
(mathworks.metrics.ParameterCou
nt)

Modeling Guideline Compliance

For this particular system, the model compliance widgets indicate the level of compliance with
industry standards and guidelines. This table lists the Metrics Dashboard widgets related to modeling
guideline compliance and the detailed information available when you drill into the widget.

Widget Metric Drill-In Data
High Integrity Model Advisor standards check For each component:
Compliance compliance - High Integrity
(mathworks.metrics.ModelAdvisorCh |* Percentage of checks passed
eckCompliance.hisl dol78) » Status of each check

Integration with the Model Advisor for
more detailed results.

MAB Compliance Model Advisor standards check For each component:
compliance - MAB
(mathworks.metrics.ModelAdvisorCh |* Percentage of checks passed
eckCompliance.maab) * Status of each check

Integration with the Model Advisor for
more detailed results.

3-5

5 Model Metrics

Widget

Metric

Drill-In Data

High Integrity
Check Issues

Model Advisor standards issues - High
Integrity
(mathworks.metrics.ModelAdvisorCh
eckIssues.hisl dol78)

* Number of compliance check issues by
component (see the following Note
below).

* Components without issues or
aggregated issues are not listed.

MAB Check Issues

Model Advisor standards issues - MAB
(mathworks.metrics.ModelAdvisorCh
eckIssues.maab)

* Number of compliance check issues by
component (see the following Note
below).

* Components without issues or
aggregated issues are not listed.

ingsCount)

Code Analyzer Warnings from MATLAB Code Analyzer |Number of Code Analyzer warnings by
Warnings (mathworks.metrics.MatlabCodeAnal |component.

yzerWarnings)
Diagnostic Simulink diagnostic warning count * Number of Simulink diagnostic
Warnings (mathworks.metrics.DiagnosticWarn warnings by component.

« If there are warnings, at the top of the
dashboard, there is a hyperlink that
opens the Diagnostic Viewer.

Note An issue with a compliance check that analyzes configuration parameters adds to the issue
count for the model that fails the check.

You can use the Metrics Dashboard to perform compliance and issues checking on your own group of
Model Advisor checks. For more information, see “Customize Metrics Dashboard Layout and
Functionality” on page 5-39.

Architecture

These widgets provide a view of your system architecture:

* The Potential Reuse/Actual Reuse widget shows the percentage of total number of
subcomponents that are clones and the percentage of total number of components that are linked
library blocks. Orange indicates potential reuse. Blue indicates actual reuse.

* The other system architecture widgets use a value scale. For each value range for a metric, a
colored bar indicates the number of components that fall within that range. Darker colors indicate
more components.

This table lists the Metrics Dashboard widgets related to architecture and the detailed information
available when you select the widget.

Collect and Explore Metric Data by Using the Metrics Dashboard

Widget

Metric

Drill-In Data

Potential Reuse /
Actual Reuse

Potential
Reuse(mathworks.metrics.CloneCont
ent) and Actual
Reuse(mathworks.metrics.LibraryCo
ntent)

Fraction of total number of subcomponents
that are clones as a percentage

Fraction of total number of components
that are linked library blocks as a
percentage

Integrate with the Identify Modeling Clones
tool by clicking the Open Conversion Tool
button.

Model Complexity

Cyclomatic complexity
(mathworks.metrics.CyclomaticComp
lexity)

Model complexity by component

Blocks Simulink block count Number of blocks by component
(mathworks.metrics.SimulinkBlockC
ount)

Stateflow LOC Effective lines of code for Stateflow Effective lines of code for Stateflow blocks
blocks by component
(mathworks.metrics.StateflowLOCCo
unt)

MATLAB LOC Effective lines of MATLAB code Effective lines of code, in MATLAB Function

(mathworks.metrics.MatlabLOCCount)

block and MATLAB functions in Stateflow,
by component

Metric Thresholds

For the Model Complexity, Modeling Guideline Compliance, and Reuse widgets, the Metrics
Dashboard contains default threshold values. These values indicate whether your data is Compliant
or requires review (Warning). For Compliant data, the widget contains green. For warning data, the
widget contains yellow. Widgets that do not have Metric threshold values contain blue.

* For the Modeling Guideline Compliance metrics, the metric threshold value is zero Model Advisor
issues. If you model has issues, the widgets contain yellow. If there are no issues, the widgets
contain green.

* If your model has warnings, the Code Analyzer and Diagnostic widgets are yellow. If there are
no warnings, the widgets contain green.

» For the reuse widgets, the metric threshold value is zero. If your model has potential clones, the
widget contains yellow. If there are no potential clones, the widget contains green.

» For the Model Complexity widget, the metric threshold value is 30. If your model has a
cyclomatic complexity greater than 30, the widget contains yellow. If the value is less than or
equal to 30, the widget contains green.

You can specify your own metric threshold values for all of the widgets in the Metrics Dashboard. You
can also specify values corresponding to a noncompliant range. For more information, see “Customize
Metrics Dashboard Layout and Functionality” on page 5-39.

5-7

5 Model Metrics

Dashboard Limitations

When using the Metrics Dashboard, note these considerations:

The analysis root for the Metrics Dashboard cannot be a Configurable Subsystem block.

The Model Advisor, a tool that the Metrics Dashboard uses for data collection, cannot have more
than one open session per model. For this reason, when the dashboard collects data, it closes an
existing Model Advisor session.

If you use an sl customization.m file to customize Model Advisor checks, these customizations
can change your dashboard results. For example, if you hide Model Advisor checks that the
dashboard uses to collect metrics, the dashboard does not collect results for those metrics.

When the dashboard collects metrics that require a model compilation, the software changes to a
temporary folder. Because of this folder change, relative path dependencies in your model can
become invalid.

The Metrics Dashboard does not count MAB checks that are not about blocks as issues. Examples
include checks that warn about font formatting or file names. In the Model Advisor Check Issues
widget, the tool might report zero MAB issues, but still report issues in the MAB Modeling
Guideline Compliance widget. For more information about these issues, click the MAB Modeling
Guideline Compliance widget.

See Also

More About

“Collect Model Metrics Programmatically” on page 5-15
“Model Metrics”
“Collect Compliance Data and Explore Results in the Model Advisor” on page 5-24

“Collect Metric Data Programmatically and View Data Through the Metrics Dashboard” on page
5-29

Collect Model Metrics Using the Model Advisor

Collect Model Metrics Using the Model Advisor

To help you assess your model for size, complexity, and readability, you can run model metrics in the
Model Advisor By Task > Model Metrics subfolder.

Open the sldemo_fuelsys model.

2 In the model window, open the Modeling tab and click Model Advisor. A System Selector —
Model Advisor dialog box opens. Click OK.

3 In the left pane of the Model Advisor, navigate to By Task > Model Metrics. Select the model
metrics to run on your model.

4 ||| [Model Metrics
4] 2 Counk Metrics
]] Simulink black metric

| Subsystem metric
| Library link metric
| Effective lines of MATLAB code metric
|| Stateflow object mekric
|| Lines of code For Stateflow objects metric
| Subsystem depth metric
4 || 1 Complexity Metrics

1] ~Cyelamatic complesity metric
4 [J] |2 Readability Metrics

V] [-] Mondescriptive block name metric

< 9] |9 (S [S

V][] Data and structure layer separation metric

4 Click Run Selected Checks.

After the Model Advisor runs an analysis, in the left pane of the Model Advisor window, select a
model metric to explore the result. Select the metric Simulink block metric. A summary table
provides the number of blocks at the root model level and subsystem level.

. - . A
Display number of blocks in the model or subsystem.

Passed

.../fuel_rate control/airflow calc 24
20
sldemo_fuelsys/Dashboard 14
.. Throttle & Manifold Throttle 14

W More {17 rows)

sldemo_fi

Alternatively, you can view the analysis results in the Model Advisor report.

After reviewing the metric results, you can update your model to meet size, complexity, and
readability recommendations.

See Also

More About
. “Model Metrics”
. “Model Metric Data Aggregation” on page 5-18

5-9

matlab:sldemo_fuelsys

5 Model Metrics

. “Collect Model Metrics Programmatically” on page 5-15
. “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-11
. “Run Model Advisor Checks and Review Results” on page 3-4

5-10

Create a Custom Model Metric for Nonvirtual Block Count

Create a Custom Model Metric for Nonvirtual Block Count

This example shows how to use the model metric API to create a custom model metric for counting
nonvirtual blocks in a model. After creating the metric, you can collect data for the metric, access the
results, and export the results.

Create Metric Class

To create a custom model metric, use the slmetric.metric.createNewMetricClass function to
create a new metric class derived from the base class slmetric.metric.Metric. The
slmetric.metric.createNewMetricClass function creates a file that contains a constructor and an
empty metric algorithm method.

1. For this example, make sure that you are in a writeable folder and create a new metric class named
nonvirtualblockcount.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. Write the metric algorithm into the slmetric.metric.Metric method, algorithm. The
algorithm calculates the metric data specified by the Advisor.component.Component class. The
Advisor.component.Types class specifies the types of model objects for which you can calculate
metric data. For this example, the file nonvirtualblockcount orig.m contains the logic to create
a metric that counts the nonvirtual blocks. Copy this file to the nonvirtualblockcount.m file.

copyfile nonvirtualblockcount orig.m nonvirtualblockcount.m f

When creating a custom metric, you must set the following properties of the slmetric.metric.Metric
class:

* ID: Unique metric identifier that retrieves the new metric data.

* Name: Name of the metric algorithm.

* ComponentScope: Model components for which the metric is calculated.

* CompileContext: Compile mode for metric calculation. If your model requires model
compilation, specify PostCompile. Collecting metric data for compiled models slows
performance.

* ResultCheckSumCoverage: Specify whether you want the metric data regenerated if source file
and Version have not changed.

* AggregationMode: How the metric algorithm aggregates metric data

Optionally, you can set these additional properties:

* Description: Description of the metric.
* Version: Metric version.

3. Now that your new model metric is defined in nonvirtualblockcount.m, you can register the new
metric in the metric repository.

[id metric,err msg] = slmetric.metric.registerMetric(className);

5-11

5 Model Metrics

5-12

Collect Metric Data

To collect metric data on models, use instances of slmetric.Engine. Using the getMetrics
method, specify the metrics you want to collect. For this example, specify the nonvirtual block count
metric for the sldemo _mdlref bus model.

1. Load the sldemo mdlref bus model.

model = 'sldemo mdlref bus';
load_system(model);

2. Create a metric engine object and set the analysis root.

metric _engine = slmetric.Engine();
setAnalysisRoot(metric_engine, 'Root',model, 'RootType', ‘Model');

3. Collect metric data for the nonvirtual block count metric.

execute(metric_engine);
rc = getMetrics(metric_engine,id metric);

Display and Export Results

To access the metrics for your model, use instance of slmetric.metric.Result. In this example,
display the nonvirtual block count metrics for the sldemo mdlref bus model. For each result, display
the MetricID, ComponentPath, and Value.

for n=1:1length(rc)
if rc(n).Status ==
results = rc(n).Results;

for m=1:length(results)
disp(['MetricID: ', results(m).MetricID]);

disp([' ComponentPath: ', results(m).ComponentPath]);
disp([' Value: ', num2str(results(m).Value)l);
disp(' ');
end
else
disp(['No results for:',rc(n).MetricID]);
end
disp(' ");

end

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus
Value: 13

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Info3
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Info4
Value: 0O

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Infol
Value: 0

Create a Custom Model Metric for Nonvirtual Block Count

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref bus/More Info2
Value: 0

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter_ bus
Value: 2

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER
Value: 6

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter
Value: 3

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/ResetCheck
Value: 4

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/ResetCheck/NoReset
Value: 2

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/ResetCheck/Reset
Value: 3

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/Counter/SaturationCheck
Value: 5

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/COUNTER/LimitsProcess
Value: 1

MetricID: nonvirtualblockcount
ComponentPath: sldemo mdlref counter bus/More Infol
Value: 0

MetricID: nonvirtualblockcount

ComponentPath: sldemo mdlref counter bus/More Info2
Value: 0

To export the metric results to an XML file, use the exportMetrics method. For each metric result, the
XML file includes the ComponentID, ComponentPath, MetricID, Value, AggregatedValue, and
Measure.

filename='MyMetricData.xml';
exportMetrics(metric_engine, filename);

For this example, unregister the nonvirtual block count metric.

slmetric.metric.unregisterMetric(id metric);

5-13

5 Model Metrics

Close the model.

clear;
bdclose('all');

Limitations

Custom metric algorithms do not support the path property on component objects:
* Linked Stateflow charts
* MATLAB Function blocks

Custom metric algorithms do not follow library links.

Copyright 2019 The MathWorks, Inc.

See Also

Advisor.component.Component | Advisor.component.Types | slmetric.Engine |
slmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.createNewMetricClass

More About

. “Model Metrics”

. “Model Metric Data Aggregation” on page 5-18

. “Collect Model Metrics Programmatically” on page 5-15

5-14

Collect Model Metrics Programmatically

Collect Model Metrics Programmatically

This example shows how to use the model metric API to programmatically collect subsystem and
block count metrics for a model. After collecting metrics for the model, you can access the results and
export them to a file.

Example Model
Open model vdp.

model = 'vdp';
open_system(model);

2 van der Pol Equation
x1
B 1-u'u > -) 1
1 11X
IR S H D
>
Mu
. jﬁm

Copyright 2004-2013 The MathWorks, Inc.

Collect Metrics

To collect metric data on a model, create a metric engine object and call execute.
metric engine = slmetric.Engine();

setAnalysisRoot(metric _engine, 'Root', 'vdp', 'RootType', 'Model');
execute(metric_engine);

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manage

Access Results
Using the getMetrics method, specify the metrics you want to collect. For this example, specify the

block count and subsystem count metrics for the vdp model. getMetrics returns an array of
slmetric.metric.ResultCollection objects.

5-15

5 Model Metrics

5-16

res _col = getMetrics(metric_engine, { 'mathworks.metrics.SimulinkBlockCount"', ...
'mathworks.metrics.SubSystemCount'});

Store and Display Results

Create cell array metricData to store the MetricID, ComponentPath, and Value for the metric
results. The MetricID is the identifier for the metric, the ComponentPath is the path to component
for which the metric is calculated, and the Value is the metric value. Write a loop to display the
results.

metricData ={'MetricID', 'ComponentPath', 'Value'};
cnt = 1;
for n=1:length(res col)
if res_col(n).Status ==
results = res_col(n).Results;

for m=1:length(results)
disp(['MetricID: ', results(m).MetricID]);
disp([' ComponentPath: ',results(m).ComponentPath]);
disp([' Value: ',num2str(results(m).Value)]);
metricData{cnt+1,1} results(m).MetricID;
metricData{cnt+1,2} results(m).ComponentPath;
metricData{cnt+1, 3} results(m).Value;
cnt = ¢cnt + 1;

end
else
disp(['No results for:',res col(n).MetricID]);
end
disp(' ');
end

MetricID: mathworks.metrics.SimulinkBlockCount
ComponentPath: vdp
Value: 11

MetricID: mathworks.metrics.SimulinkBlockCount
ComponentPath: vdp/More Info
Value: 1

MetricID: mathworks.metrics.SimulinkBlockCount
ComponentPath: vdp/More Info/Model Info
Value: 1

MetricID: mathworks.metrics.SimulinkBlockCount
ComponentPath: vdp/More Info/Model Info/EmptySubsystem
Value: 0

MetricID: mathworks.metrics.SubSystemCount
ComponentPath: vdp
Value: 1

MetricID: mathworks.metrics.SubSystemCount
ComponentPath: vdp/More Info
Value: 0O

MetricID: mathworks.metrics.SubSystemCount
ComponentPath: vdp/More Info/Model Info
Value: 1

MetricID: mathworks.metrics.SubSystemCount
ComponentPath: vdp/More Info/Model Info/EmptySubsystem
Value: 0O

Collect Model Metrics Programmatically

Export Results

To export the metricData results MetricID, ComponentPath, and Value to a spreadsheet, use
writetable to write the contents of metricData to MySpreadsheet.xlsx.

filename = 'MySpreadsheet.xlsx';
T=table(metricData);
writetable(T, filename);

To export the metric results to an XML file, use the exportMetrics method. For each metric result,
the XML file includes the ComponentID, ComponentPath, MetricID, Value, AggregatedValue,
and Measure.

filename='MyMetricResults.xml';
exportMetrics(metric_engine, filename)

Close the model vdp.
bdclose(model);

Limitations

For one model, you cannot collect metric data into the same database file (that is, the Metrics.db
file) on multiple platforms.

See Also
slmetric.Engine | slmetric.metric.Result|slmetric.metric.ResultCollection

More About

. “Model Metrics”

. “Model Metric Data Aggregation” on page 5-18

. “Collect Model Metrics Using the Model Advisor” on page 5-9

. “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-11

5-17

5 Model Metrics

Model Metric Data Aggregation

You can better understand the size, complexity, and readability of a model and its components by
analyzing aggregated model metric data. Aggregated metric data is available in the
AggregatedValue and AggregatedMeasures properties of an slmetric.metric.Result object.
The AggregatedValue property aggregates the metric scalar values. The AggregatedMeasures
property aggregates the metric measures (that is, the detailed information about the metric values).

How Model Metric Aggregation Works

The implementation of a model metric defines how a metric aggregates data across a component
hierarchy. For MathWorks model metrics, the slmetric.metric.Metric class defines model metric
aggregation. This class includes the AggregationMode property, which has these options:

* Sum: Returns the sum of the Value property and the Value properties of its children components
across the component hierarchy. Returns the sum of the Meaures property and the Measures
properties of its children components across the component hierarchy.

* Max: Returns the maximum of the Value property and the Value properties of its children
components across the component hierarchy. Returns the maximum of the Measures property
and the Measures properties of its children components across the component hierarchy.

* None: No aggregation of metric values.

You can find descriptions of MathWorks model metrics and their AggregationMode property setting
in “Model Metrics”. For custom metrics, as part of the algorithm method, you can define how the
metric aggregates data. For more information, see “Create a Custom Model Metric for Nonvirtual
Block Count” on page 5-11.

This diagram shows how the software aggregates metric data across the components of a model
hierarchy. The parent model is at the top of the hierarchy. The components can be the following:

* Model

* Subsystem block

¢ Chart

* MATLAB function block
* Protected model

5-18

Model Metric Data Aggregation

AggregationMode: Sum

V = Value Model
AV = AggregatedValue V=6 AV=T75
| |
Component Component Component
V=14 AV=33 V=7 AvV=17 V=6 AV=19
| Component Component ! Component | Component Component |
V=8 AV=12 V=7 AV=7 V=10 AvV=10 V=4 AV=4 V=9 AV=9
Component
V=4 AvV=4

Access Aggregated Metric Data

This example shows how to collect metric data programmatically in the metric engine, and then
access aggregated metric data.

1 Load the sldemo applyVarStruct model.

model = 'sldemo_applyVarStruct';
open(model);
load system(model);

2 Create an slmetric.Engine object and set the analysis root.
metric engine = slmetric.Engine();
setAnalysisRoot(metric_engine, 'Root',model, 'RootType', 'Model');
3 Collect data for the Input output model metric.

execute(metric_engine, 'mathworks.metrics.I0Count');

4 Get the model metric data that returns an array of slmetric.metric.ResultCollection
objects, res_col. Specify the input argument for AggregationDepth.

res col = getMetrics(metric_engine, 'mathworks.metrics.IOCount',...
'AggregationDepth', 'All');

The AggregationDepth input argument has two options: AL1 and None. If you do not want the
getMetrics method to aggregate measures and values, specify None.

5 Display the results.

metricData ={'MetricID', 'ComponentPath', 'Value', ...
'AggregatedValue', 'Measures', 'AggregatedMeasures'};
cnt = 1;
for n=1:1length(res col)
if res col(n).Status ==
results = res col(n).Results;

5-19

5 Model Metrics

5-20

for m=1:1length(results)
disp(['MetricID: ', results(m).MetricID]);

disp([' ComponentPath: ', results(m).ComponentPath]);

disp([' Value: ',num2str(results(m).Value)l);

disp([' Aggregated Value: ',num2str(results(m).AggregatedValue)l]);
disp([' Measures: ',num2str(results(m).Measures)]);

disp([' Aggregated Measures: ',...

num2str(results(m).AggregatedMeasures)]);
metricData{cnt+1,1} results(m).MetricID;

metricData{cnt+1,2} = results(m).ComponentPath;
metricData{cnt+1,3} = results(m).Value;
tdmetricData{cnt+1,4} = results(m).Measures;
metricData{cnt+1,5} = results(m).AggregatedMeasures;

cnt = cnt + 1;
end
else
disp(['No results for:',res col(n).MetricID]);
end
disp(' ');
end

Here are the results:

MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct
Value: 3
Aggregated Value: 5
Measures: 1 2 0 0
Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Controller
Value: 4
Aggregated Value: 4
Measures: 3 1 0 0O
Aggregated Measures: 3 1 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Aircraft
Dynamics
Model
Value: 5
Aggregated Value: 5
Measures: 3 2 0 0
Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Dryden Wind
Gust Models
Value: 2
Aggregated Value: 2
Measures: 0 2 0 O
Aggregated Measures: 0 2 0 0
MetricID: mathworks.metrics.IOCount
ComponentPath: sldemo applyVarStruct/Nz pilot
calculation
Value: 3
Aggregated Value: 3
Measures: 2 1 0 0O
Aggregated Measures: 2 1 0 0
MetricID: mathworks.metrics.IOCount

Model Metric Data Aggregation

ComponentPath: sldemo applyVarStruct/More Info2
Value: 0

Aggregated Value: 0

Measures: 0 0 0 0

Aggregated Measures: 0 0 0 0

For the Input output metric, the AggregationMode is Max. For each component, the
AggregatedValue and AggregatedMeasures properties are the maximum number of inputs and
outputs of itself and its children components. For example, for sldemo_applyVarStruct, the

AggregatedValue property is 5, which is the sldemo _applyVarStruct/Aircraft Dynamics
Model component value.

See Also

slmetric.Engine | slmetric.metric.Metric|slmetric.metric.Result |
slmetric.metric.ResultCollection

More About

. “Model Metrics”

. “Model Metric Data Aggregation” on page 5-18

. “Collect Model Metrics Using the Model Advisor” on page 5-9

. “Create a Custom Model Metric for Nonvirtual Block Count” on page 5-11

5-21

5 Model Metrics

Identify Modeling Clones with the Metrics Dashboard

You can use the Metrics Dashboard tool to help you reuse subsystems by identifying clones across a
model hierarchy. Clones are identical MATLAB Function blocks, identical Stateflow charts, and
subsystems that have identical block types and connections. The clones can have different parameter
settings and values. To replace clones with links to library blocks, from the Metrics Dashboard, you
can open the Clone Detector app.

Identify Clones

To open the example model ex clone detection, change your directory to the matlabroot\help
\toolbox\simulink\examples folder. At the MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox','simulink', 'examples'));

O r——»m outi »{int out1

¥

(2 y—»|m2 Out2 »{in2 Out2 > %

851 Product

Outl

G12 outt] int outt] int]

n
Variant Source1
._ y————p| In2 Ot
Ind
uf

&
G or—m Outt »lo
e Qut1 ‘[5\ In2
L’ =
in2 e 357 Variant Source2
Copyright 2017 The MathWorks Inc.

1 Save the ex clone detection.slx model to a local working folder.

2 On the Apps tab, click Metrics Dashboard.

3 In the Metrics Dasbhoard, click All Metrics.

4 In the Architecture section, the yellow bar in the Potential Reuse row indicates that the model

contains clones. The percentage is the fraction of the total number of subsystems, including
Stateflow Charts and MATLAB Function blocks, that are clones. To see details, click the yellow
bar.

The model contains three clone groups. SS1 and SS4 are part of clone group one. SS3 and SS5 are
part of clone group two. SS6 and SS7 are part of clone group three.

5-22

Identify Modeling Clones with the Metrics Dashboard

Replace Clones with Links to Library Blocks

1

To replace clones with links to library blocks, open the Clone Detector app by clicking Open
Conversion Tool. The Clone Detection app opens. For more information on the app, see “Enable
Component Reuse by Using Clone Detection” on page 3-26.

Click Find Clones. The app contains a list of clone groups on the Clone Detection Actions and
Results pane, on the Map Clone Groups to Library tab.

Click Replace Clones. The Clone Detector app replaces the clones with links to library blocks.
The library blocks are in the library specified by the Library to place clones parameter. This
parameter is on the Map Clone Groups to Library tab. The library is on the MATLAB path. It
has a default name of newLibraryFile.

After you refactor, you can remove the latest changes from the model. In the Clone Detection
Actions and Results pane, in the Logs tab, open the latest log and click Restore. Each time you
refactor a model, the tool creates a backup model in the folder named with the prefix m2m plus the
model name.

If you have a Simulink Test license, you can verify the equivalency of the refactored model and the
original model. Click Check Equivalency.

Run Model Metrics on the Refactored Model

Navigate to the Metrics Dashboard.
Click All Metrics.

In the Architecture section, the blue bar in the Actual Reuse row indicates that 75% of model
components are links to library subsystems. The Potential Reuse row indicates that the model
does not contain any clones that do not have links to library blocks.

See Also

More About

“Collect Model Metrics”

5-23

5 Model Metrics

Collect Compliance Data and Explore Results in the Model
Advisor

This example shows how to collect model metric data by using the Metrics Dashboard. From the
dashboard, explore detailed compliance results and, fix compliance issues by using the Model
Advisor.

Open the Example Model

Open the example model sldemo fuelsys and save the model to a local folder.

open_system('sldemo fuelsys');

Fault-Tolerant Fuel Control System

W
H 1] c:d o

To Plant

L
throttle_sw il »)
Diashboard throttle | enigine speed o2_out
Thraottle Angle - iradi3)|, mum) W
Fault Switch Throttle_Angle_Selector
- 1 [bar)
engine_speed > - -l throtile angle MAP
Engine Speed spead_sw il g o e
spaad
Engine Speed —
Fault Switch Engine_Speed_Selector| (3's) . ;
Convert | psensors fuel_rate | Convert — e fuel airffuel ratic
— [fuel 1845 M e i
-
P

BO0_SW I L Engine Gas Dynamics
g0
EGO Fault Switch =
b fual_rate_control
02_\oltage_Selactor fuel air_fusl_ratio

| Yy
- =
map

_Selector

map_sw

j‘l ¥

MAP Fault Switch

|
1
-

To Controller

Open the Dashboard subsystem to simulate any combination of sensor failures. Copyright 1990-2017 The MathWarks, Inc.

Open the Metrics Dashboard

On the Apps tab, open the Metrics Dashboard by clicking Metrics Dashboard.

Collect Model Metrics

To collect the metric data for this model, click the All Metrics icon.

Explore Compliance Results

Locate the MODELING GUIDELINE COMPLIANCE section of the dashboard. This section displays

the percentage of High Integrity and MAB compliance checks that passed on all systems. The bars
chart show the number of issues reported by the checks in the corresponding check group.

5-24

matlab:sldemo_fuelsys

Collect Compliance Data and Explore Results in the Model Advisor

MODELING GUIDELINE COMPLIANCE

-4 -
88.8% 64.9%
High Integrity MAAB
564
187
(3 (2
High Integrity MAAE

Model Advisor Check Issues

To see a table that details the number of compliance issues by component, click anywhere on the
High Integrity bar chart. For compliance checks that analyze configuration settings, each check that
does not pass adds 1 issue to the model on which it failed.

5-25

5 Model Metrics

IMETRICS DETAILS

Dashboard

H =

Table Tree

VIEW VISUALIZATIONS

Model Advisor standards issues for High Integrity

Metric that counts the number of reported issues on modeling constructs by the High Integrity Medel Advisor standards check grouping.

Type
Woel

Chart

Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem

Component
SIOEMO_TUESYS

control_logic
Speed.spesd_estimate
Throttle throttle_estimate
Pressure. map_estimate
fuel_calc

Mixing & Combustion
feediorward_fuel_rate
switchable_compensation

MATLAB Funclion |EGO Sensor

Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem

validate_sample_time
CheckRange
disabled_mode
low_mode

rich_mode

System Lag

Throttle & Manifold
Intake Manifold
Dashboard

MATLAB Funcfion |MATLAB Function

Subsystem

Throttle

MATLAB Funciion | f({theta)
MATLAB Funcfion | g(pratio)

Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem

5-26

Throttle Command

To Controller

Engine Gas Dynamics
To Plant
fuel_rate_control
airflow_calc

Path
SIEMo_TUelsys

sldemo_fuelsysffuel_rate_confrol/control_logic
sldemeo_fuelsysfiuel_rate_confrol/control_legic/Speed.speed_estimate
emo_fuelsys/fuel_rate_controlicontrol_logic/Throttle throttle_estimate

sldemo_fuelsysifuel_rate_confrol/control_logic/Pressure. map_estimate
sldemo_fuelsys/fuel_rate_control/fuel_calc
sldemo_fuelsys/Engine Gas Dynamics/Mixing & Combustion
sldemeo_fuelsysfiuel_rate_confrolfuel_calc/feedforward fuel rate
sldemo_fuelsys/fuel_rate_controlfuel_calc/switchable_compensation
...o_fuelsys/Engine Gas Dynamics/Mixing & Combustion/EGO Sensor
sldemo_fuelsys/fuel_raie_control/ivalidate_sample_time

@ sldemo_fuelsysfiuel_rate_conirolivalidate_sample_time/CheckRange

...fuel_rate_conirolffuel_calc/swil »_compensation/di |_mode

..Isysfiuel_rate_controlfuel_calc/switchable_compensation/iow_mode

...Isysfiuel_rate_confrolffuel_calc/switchable_compensation/rich_mode
@ | __mo_fuelsys/Engine Gas Dynamics/Mixing & Combustion/Sysiem Lag
sldemo_fuelsys/Engine Gas Dynamics/Throttle & Manifold
...0_fuelsys/Engine Gas Dynamics/Throttle & Manifold/Iintake Manifold
sldemo_fuelsys/Dashboard
_as Dynamics/Throttle & Manifold/Intake Manifold/ MATLAB Function
sldemeo_fuelsys/Engine Gas Dynamics/Throftle & ManifoldThrottle
_o_fuelsys/Engine Gas Dynamics/Throttle & Manifold/Throttie/fitheta
...0_fuelsys/Engine Gas Dynamics/Throttle & ManifoldThrottie/g{pratio
@ sldemo_fuelsys/Throftle Command
sldemo_fuelsys/To Controller
sldemeo_fuelsys/Engine Gas Dynamics
sldemo_fuelsys/To Plant
sldemo_fuelsysffuel_rate_conirol
sldemo_fuelsys/iuel_rate_control/airflow_calc

JEFS) QPR QY QU NI QY NI RS Y Sy P SR Ry ey U Iy TN Uy I QU IR R N Y (I Y R

Issues

&

| Open resuits in Model Advisor |

Issues (incl....
187

22

From the table, open the Throttle component in the model editor by clicking the component
hyperlink in the table. The model editor highlights blocks in the component that have compliance

issues.

Collect Compliance Data and Explore Results in the Model Advisor

@sldemu_l‘uelsvs P |Py|Engine Gas Dynamics P [Pa|Throttle & Manifold P [Py Throttle

q deg) ‘.

Throttle Flow vs. Valve Angle and Pressure

Explore Compliance Results in the Model Advisor

In the Metrics Dashboard, return to the main dashboard page by clicking the Dashboard icon.
Click the High Integrity percentage gauge.

To see the status for each compliance check, click the Table view.

Expand the sldemo fuelsys node.

aua A W N =

To explore check results in more detail, click the Check safety-related diagnostic settings for
sample time hyperlink.

6 In the Model Advisor Highlight dialog box, click Check safety-related diagnostic settings for
sample time hyperlink.

Fix a Compliance Issue

1 In the Model Advisor Report, the check results show the Current Value and Recommended Value
of diagnostic parameters.

2 To change the Current Value to the Recommended Value, click the parameter. The Model
Configuration Parameters dialog box opens.

Change the parameter settings.
Save your changes and close the dialog box.

Save the changes to the model.

5-27

5 Model Metrics

5-28

Recollect Metrics

1 Return to the Metrics Dashboard.

2 To recollect the model metrics, click the All Metrics icon.

3 Toreturn to the main dashboard page, click the Dashboard icon.

4 Confirm that the number of High Integrity check issues is reduced.
See Also

More About

. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
. “Collect Model Metrics Programmatically” on page 5-15

Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

Collect Metric Data Programmatically and View Data Through
the Metrics Dashboard

This example shows how to use the model metrics API to collect model metric data for your model,
and then explore the results by using the Metrics Dashboard.

Collect Metric Data Programmatically

To collect all of the available metrics for the model sldemo_fuelsys, use the slmetric.Engine
API. The metrics engine stores the results in the metric repository file in the current Simulation
Cache Folder, slprj.

metric_engine = slmetric.Engine();

setAnalysisRoot(metric_engine, 'Root', 'sldemo fuelsys', 'RootType', 'Model');
evalc('execute(metric_engine)');

Determine Model Compliance with MAB Guidelines

To determine the percentage of MAB checks that pass, use the metric compliance results.
metricID = 'mathworks.metrics.ModelAdvisorCheckCompliance.maab';

metricResult = getAnalysisRootMetric(metric engine, metricID);

disp(['MAAB compliance: ', num2str(100 * metricResult.AggregatedValue, 3),'%']);
MAAB compliance: 65.6%

Open the Metrics Dashboard

To explore the collected compliance metrics in more detail, open the Metrics Dashboard for the
model.

metricsdashboard('sldemo fuelsys');

The Metrics Dashboard opens data for the model from the active metric repository, inside the active
Simulation Cache Folder. To view the previously collected data, the slprj folder must be the same.

Find the MODELING GUIDELINE COMPLIANCE section of the dashboard. For each category of
compliance checks, the gauge indicates the percentage of compliance checks that passed.

5-29

5 Model Metrics

MODELING GUIDELINE COMPLIANCE

o -
88.8% 65.6%
High Integrity MAAB
563
187
-
High Integrity MAAE

Model Advisor Check Issues

0 0

Code Analyzer Diagnostic
Warnings Warnings

The dashboard reports the same MAB compliance percentage as the slmetric.Engine API reports.

Explore the MAB Compliance Results

Underneath the percentage gauges, the bar chart indicates the number of compliance check issues.
Click anywhere in the MAB bar chart for Model Advisor Check Issues.

5-30

Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

263

[
MAAS

The table details the number of check issues per model component. To sort the components by
number of check issues, click the Issues column.

5-31

5 Model Metrics

Model Advisor standards issues for MAAB

Metric that counts the number of reported issues on modeling constructs by the MAAB Model Advisor standards check grouping.

N

[open results in Model Advisor |

Type
Model
Chart
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem

Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem
Subsystem

Subsystem

Subsystem
Subsystem
Subsystem
Subsystem

MATLAB Function

MATLAB Function

MATLAB Function
MATLAB Function

Component
sldemo_fuelsys
control_logic
Speed.speed_estimate
Throttle throttle_estimate
Pressure. map_estimate
fuel_calc

Mixing & Combustion
feedforward_fuel_rate
switchable_compensation
EGO Sensor
validate_sample_time
CheckRange
dizabled_mode
low_mode

rich_mode

System Lag

Throttle & Manifold
Intake Manifold
Dashboard

MATLAB Function
Throttle

fitheta)

g(pratio)

Throttle Command

To Controller

Engine Gas Dynamics
To Plant

(-]

(-]

(-]

(-]

(]
(]
(]

Path

sldemo_fuelsys
sldemo_fuelsysifuel_rate_control/control_logic
...ysffuel_rate_control/control_logic/Speed.speed_estimate
...ffuel_rate_control/control_logic/Throtile throtile_estimate
...sifuel_rate_controlfcontrol_logic/Pressure map_estimate
sldemo_fuelsysifuel_rate_controlifuel_calc
...emo_fuelsys/Engine Gas Dynamics/Mixing & Combustion
...fuelsys/fuel_rate_controlffuel_calc/feedforward_fuel_rate
...gysffuel_rate_controlfuel_calc/switchable_compensation
...ngine Gas Dynamics/Mixing & Combustion/EGO Sensor
sldemo_fuelsysifuel_rate_confrolivalidate_sample_time
...zysffuel_rate_controlivalidate_sample_time/CheckRange
...nirolffuel_calc/switchable_compensation/disabled_mode
...te_controlffuel_calc/switchable_compensation/low_mode
...e_confrolffuel_calc/switchable_compensation/rich_mode
...Engine Gas Dynamics/Mixing & Combustion/System Lag
sldemo_fuelsys/Engine Gas Dynamics/Throftle & Manifold
...ngine Gas Dynamics/Throttle & Manifold/intake Manifold
sldemo_fuelsys/Dashboard

...ics/Throttle & Manifold/Intake Manifold/MATLAB Function
...elsys/Engine Gas Dynamics/Throtile & Manifold/Throttle
...ngine Gas Dynamics/Throttle & Manifold/Throttle/fitheta
...ngine Gas Dynamics/Throttle & Manifold/Throttle/g(pratio
sldemo_fuelsysiThrotile Command

sldemo_fuelsysiTo Controller

sldemo_fuelsys/Engine Gas Dynamics

sldemo_fuelsysiTo Plant

| a]alalalalalalalalalalalalala]lalalalalalalalafala] =

Issues
59

232

13

10

10

5

4+ | Issues (incl....
563 -
265
13
10
10
40

5-32

See Also

More About

“Collect Model Metrics Programmatically” on page 5-15

“Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

Fix Metric Threshold Violations in a Continuous Integration
Systems Workflow

This example shows how to use the Metrics Dashboard with open-source tools GitLab and Jenkins to
test and refine your model in a continuous integration systems workflow. Continuous integration is
the practice of merging all developer working copies of project files to a shared mainline. This
workflow saves time and improves quality by maintaining version control and automating and
standardizing testing.

This example refers to a project that contains the shipped project matlab:sldemo slproject airframe
and these additional files which are relevant to this example:

* A MATLAB script that specifies metric thresholds and customizes the Metrics Dashboard.

A MATLAB unit test that collects metric data and checks whether there are metric threshold
violations.

The example uses the Jenkins continuous integration server to run the MATLAB unit test to determine
if there are metric threshold violations. Jenkins archives test results for you to download and
investigate locally. GitLab is an online Git repository manager that you can configure to work with
Jenkins. This diagram shows how Simulink Check, GitLab, and Jenkins work together in a continuous
integration workflow.

Continuous Integration Workflow

Phase 1: Feature Development

| Stageand ‘
Push branch to

Create a GIT ‘ Implement change on ‘ Perform local ‘
GitLab

feature branch Simulink models qualification commit changes

© T 4 0 4 e "

Phase 2: Qualification Using Continuous Integration

Collect model
Merge Request ‘ i . i . .
. . Run tests on topic metrics and Communicate test Archive analysis
triggers a job on \ |
. branch compare against results to Jenkins results
Jenkins

L) | thresholds |
- — — >y L. S >y e — >y N S

v @ 8 4 4 4 @ ®

Phase 3: Investigate Quality Issues

Download archived results into Explore detailed analysis

local GIT repository workspace

4 4

| results in Metrics Dashboard

Project Setup

The project contains all model, data, and configuration files including these files which are required
for this example:

* A MATLAB unit test that collects metric data for the project and checks that the model files
contain no metric threshold violations. For more information on the MATLAB Unit tests, see
“Script-Based Unit Tests” (MATLAB).

5-33

matlab:sldemo_slproject_airframe

5 Model Metrics

5-34

A setup.m file that activates the configuration XML files that define metric thresholds, set custom
metric families, and customizes the Metrics Dashboard layout. For this example, this code is the
setup.m script:

function setup

end

% refresh Model Advisor customizations
Advisor.Manager.refresh customizations();

% set metric configuration with thresholds
configFile = fullfile(pwd, 'config', 'MyConfiguration.xml');
slmetric.config.setActiveConfiguration(configFile);

uiconf = fullfile(pwd, 'config', 'MyDashboardConfiguration.xml');
slmetric.dashboard.setActiveConfiguration(uiconf);

On the Project tab, click Startup Shudown. For the Startup files field, specify the setup.m file.

For more information on how to customize the Metrics Dashboard, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-39.

An sl customization.m file that activates the Model Advisor configuration file to customize the
Model Advisor checks.

A run script that executes during a Jenkins build. For this example, this code is in the run.m file:

% script executed during Jenkins build
function run(IN CI)

end

if (IN_CI)
jenkins workspace = getenv('WORKSPACE');
cd(jenkins workspace);

end

% open the sl project
slproj = simulinkproject(pwd);

% execute tests
runUnitTest();

slproj.close();
if IN CI

exit
end

A cleanup.m file that resets the active metric configuration to the default configuration. For this
example, this code is in the cleanup.m file script:

function cleanup

end

rmpath(fullfile(pwd, 'data'));
Advisor.Manager.refresh customizations();

% reset active metric configuration to default
slmetric.config.setActiveConfiguration('"');
slmetric.dashboard.setActiveConfiguration('"');

On the Project tab, click Startup Shudown. For the Shutdown files field, specify the
cleanup.m file.

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

A .gitignore file that verifies that derived artifacts are not checked into GitLab. This code is in
the .gitignore file:

work/**
reports/**
*.asv
*.autosave

GitLab Setup

Create a GitLab project for source-controlling your Project. For more information, see https://
docs.gitlab.com/ee/README.html.

1
2

Install the Git Client.

Set up a branching workflow. With GitLab, from the main branch, create a temporary branch for
implementing changes to the model files. Integration engineers can use Jenkins test results to
decide whether to merge a temporary branch into the master branch. For more information, see

https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows.

Under Settings > Repository, protect the master branch by enforcing the use of merge
requests when developers want to merge their changes into the master branch.

Under Settings, on the Integrations page, add a webhook to the URL of your Jenkins project.
This webhook triggers a build job on the Jenkins server.

Jenkins Setup

Install GitLab and Tap plugins. The MATLAB unit test uses the TAPPlugin to stream results to a . tap
file. To enable communication of test status from MATLAB to the Jenkins job, Jenkins imports
the . tap file.

Create a Jenkins project. Specify these configurations:

1

In your Jenkins project, click Configure.
On the General tab, specify a project name.

On the Source Code Management tab, for the Repository URL field, specify the URL of your
GitLab repository.

On the Build Triggers tab, select Build when a change is pushed to GitLab.
On the Build tab, execute MATLAB to call the run script. The run script opens the project and
runs all unit tests. For the project in this example, the code is:
matlab -nodisplay -r...
"cd /var/lib/jenkins/workspace/'18b Metrics CI Demo'; run(true)"

In the Post-build Actions tab, configure the TAP plugin to publish TAP results to Jenkins. In the
Test Results field, specify reports/*.tap. For Files to archive, specify reports/
** work/**,

The TAP plugin shows details from the MATLAB Unit test in the extended results of the job. The
Jenkins archiving infrastructure saves derived artifacts that are generated during a Jenkins build.

5-35

https://docs.gitlab.com/ee/README.html
https://docs.gitlab.com/ee/README.html
https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows

5 Model Metrics

5-36

Continuous Integration Workflow

After setting up your project, Jenkins, and GitLab, follow the continuous integration workflow.

Phase 1: Feature Development

W N =

N o u b

10

11

Create a local clone of the GitLab repository. See “Clone from Git Repository” (MATLAB).
In Simulink, navigate to the local GitLab repository.

Create a feature branch and fetch and check-out files. See “Branch and Merge Files with Git”
(Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

Make any necessary changes to the project files.
Simulate the model and validate the output in the Simulation Data Inspector.
Run MATLAB unit tests. For more information, see runtests.

Add and commit the modified models to the feature branch. See “Branch and Merge Files with
Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

Push changes to the GitLab repository. See “Branch and Merge Files with Git” (Simulink) and
“Pull, Push, and Fetch Files with Git” (Simulink).

In GitLab, create a merge request. Select the feature branch as source branch and the target
branch as master. Click Compare Branches and Continue.

If the feature is not fully implemented, mark the merge request as a work in progress by adding
the letters WIP: at the beginning of the request. If the merge request is not marked WIP;, it
immediately triggers a build after creation.

Click Submit Merge Request.

Phase 2: Qualification by Using Continuous Integration

1

gua A W N

If the letters WIP: are not at the beginning of the merge request, the push command triggers a
Jenkins build. In the Jenkins Setup part of this example, you configured Jenkins to perform a
build when you pushed changes to GitLab. To remove the letters, click Resolve WIP status.

Navigate to the Jenkins project. In Build History, you can see the build status.
Click the Build.
Click Tap Test Results.

For this example, the MetricThresholdGateway.m unit test did not pass for three metrics
because these metrics did not meet the thresholds. To investigate this data, you must download
the data locally.

Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

3 Taikines
- 4049
29 tasts
Took 0 ms
[Sadd description
All Failed Tests
Tast Hame Duration Age
A7 - - pests WalricTheasholdGatew et ThissholdsMaiiclDemathworks_melrics ModelidvisorChackCompliance SysRool Requined) 0 ms
13 - - bests MetricThresholdGatewaySes Thresholds{MeliclD=mathvorks_meiics ModelAdvisoChecklssues_SysRool RequiredGuid) 0 ms
22 - - tests MotricThresholdGstmeanyles ThreshokdsMaticlD-mathworks._metics_SimulinkBlockCount) Oms
All Tests

Duration Status Skip Todo
B ms 0K Na Ma
I ms OK Ko Mo

x MetricT : ClnanMatiicDaiaCalioctl
£ tests MatricThresholdGatewsytestThresholds{MeticlD=mathworks_matrics_ClooeContent)

Phase 3: Investigate Quality Issues Locally

1 Download the archived results to a local Git repository workspace.

Unzip the downloaded files. Copy the reports/ and work/ folders to the respective folders in
the local repository.

To explore the results, open the project and the Metrics Dashboard.

b itetrics Cinthbcard

Bl £k 17
WY spaicigncy st | s @) siproject_f14
. M:n_“m Created by: The Mamieds. inc Revision: 153 1 B modds 0 maTLAR LOC (] 1]
W | dete Codlecied om: $7162096 35013 AM 22
B 4 Blorks & Fies 0 Sasteliow 106 oy bt Ik
§ | modds
t P
W n
" e B MOOTLING LD LING COMPLANC ik ARCHITECTURED
-tignone
£ Actual Reuss =]
Fotenteyl Reuss]'
- [Tirs & i Y feare
85.0% T5.0%
Labels v Req Rec. G
& {1 Clusfication

Cunent Branch

Moo Comgaity I |
"] @ 150
—— v v
l Biocks “
1 150
o v
Facuass Esczrmanzed

-dagrebae-loaghadinal-conbnglige

Banreh ftater: Meimal el Adviner Chech insees :x
Conincidunt with Smtafiow LOE
Forgind §-dicretme-inngitsdinl- oot [] 3 i ¥ E
L
Dtaki 0 0
Code Analyzer Di;
e T wWamings wamings e o

5-37

5 Model Metrics

4 To resolve the test failures, make the necessary updates to the models. Push the changes to the
feature branch in GitLab.

5 Integration engineers can use Jenkins test results to decide when it is acceptable to perform the
merge of the temporary branch into the master branch.

See Also

slmetric.config.setActiveConfiguration |
slmetric.dashboard.setActiveConfiguration

More About

. “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-8
. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5-38

Customize Metrics Dashboard Layout and Functionality

Customize Metrics Dashboard Layout and Functionality

Customize the Metrics Dashboard by using the model metric programming interface. Customizing the
dashboard extends your ability to use model metrics to assess that your model and code comply with
size, complexity, and readability requirements. You can perform these Metrics Dashboard
customizations:

* Configure compliance metrics to obtain compliance and issues metric data on your Model Advisor
configuration.

* Customize the dashboard layout by adding custom metrics, removing widgets, and configuring
existing widgets.

» Categorize metric data as compliant, warning, and noncompliant by specifying metric threshold
values.

Configure Compliance Metrics

Use the Metrics Dashboard and metric APIs to obtain compliance and issues metric data on your
Model Advisor configuration or on an existing check group such as the MISRA checks. To set up your
own Model Advisor configuration, see “Use the Model Advisor Configuration Editor to Customize the
Model Advisor” on page 7-3. After you have set up your Model Advisor configuration, follow these
steps to specify the check groups for which you want to obtain compliance and issues metric data:

1. To open the model, at the MATLAB command prompt, enter this command:

sf _car

2. Open the default configuration (that is, the one that is shipped with the Metrics Dashboard). Add a
corresponding slmetric.config.Configuration object to the base workspace.

metricconfig=slmetric.config.Configuration.openDefaultConfiguration();

3. Create a cell array consisting of the Check Group IDs that correspond to those check groups.
Obtain a Check Group ID by opening the Model Advisor Configuration Editor and selecting the folder
that contains the group of checks. The folder contains a Check Group ID parameter.

values = {'maab', 'hisl dol78', ' SYSTEM By Task misra c'};

This cell array specifies MAAB, High-Integrity, and MISRA check groups. The values maab and

hisl dol78 correspond to a subset of MAAB and High-Integrity System checks. To include all
checks, specify the value for the Check Group ID parameter from the Model Advisor Configuration
Editor.

4. To set the configuration, pass the values cell array into the
setMetricFamilyParameterValues method. The 'ModelAdvisorStandard' string is a standard
string that you must supply to thesetMetricFamilyParameterValues method.

setMetricFamilyParameterValues(metricconfig, 'ModelAdvisorStandard', values);

5. Open the default configuration for the Metrics Dashboard layout (that is, the one that ships with
the Metrics Dashboard).

dashboardconfig = slmetric.dashboard.Configuration.openDefaultConfiguration();

6. Obtain the slmetric.dashboard.Layoutobject from the
slmetric.dashboard.Configuration object.

5-39

5 Model Metrics

5-40

layout = getDashboardLayout(dashboardconfig);

7. Obtain widget objects that are in the layout object.

layoutWidget = getWidgets(layout);

8. The slmetric.dashboard.Layout object contains these objects:

An slmetric.dashboard.Container object that holds an slmetrics.dashboard.Widget
object of type SystemInfo. The red number one in the diagram below indicates the SystemInfo
widget.

An slmetric.dashboard.Groupobject that has the title SIZE.

An slmetrics.dashboard.Group object that has the title MODELING GUIDELINE
COMPLIANCE.

An slmetrics.dashboard.Group object that has the title ARCHITECTURE.

In the diagram, the red numbers 1, 2, 3, and 4 indicate their order in the layoutWidget array.
Obtain the compliance group from the layout.

complianceGroup = layoutWidget(3);

Customize Metrics Dashboard Layout and Functionality

4\ Metrics Dashboard

METRICS DASHEOQARD

o T T—"

Opven Opim Nmpile All Metrics

FILE | RUN
sf_car 1

Created by: The MathWorks, Inc. Revision:

1.123

Collected 1/14/2019, 8:41:1
on:

MODELING GUIDELINE COMPLIANCE 3

3.1.1

> 7.

Show:

| THRESHOLDS |

SIZE2 [y

63

0 1 Blocks
Warnings

& ARCHITECTURE 4

3.1.2

Actual Reuse

Potential Reuse

84.4% 70.8%
High Integrity MAAB
" 3.1.3 Model Complexity
85
Blocks
b b
High Integrity MAAB
Model Advisor Check Issues
Stateflow LOC
3.2.1 3.2.2 0
Code Analyzer Diagnostic
Warnings Warnings MATLAB LOC

1 Models 22 MATLAB LOC 0 -n 0
1 Files 17 Stateflow LOC System Interface

4|

20% 40% 60% 80% 100%

20 40 60 80 100

20 40 60 80 100

9. The modeling guideline compliance group contains two containers. The top container contains the
High Integrity and MAAB compliance and check issues widgets. The red numbers 3.1.1, 3.1.2, and
3.1.3 indicate the order of the three widgets in the first container. The second container contains the
Code Analyzer Warnings and Diagnostic Warnings widgets.

Remove the High Integrity compliance widget.

complianceC

ontainers = getWidgets(complianceGroup);
complianceContainerWidgets = getWidgets(complianceContainers(1l));
complianceContainers(1l).removeWidget (complianceContainerWidgets(1));

10. Create a custom widget for visualizing MISRA check issues metrics.

misraWidget = complianceContainers(1).addWidget('Custom', 1);

misraWidget.Title=('MISRA');

misraWidget.VisualizationType = 'RadialGauge’;

misraWidget.setMetricIDs('mathworks.metrics.ModelAdvisorCheckCompliance.

misraWidget.setWidths(slmetric.dashboard.Width.Medium);

5-41

_SYSTEM By Task misra c'

5 Model Metrics

5-42

11. The bar chart widget visualizes the High Integrity and MAAB check groups. Point this widget to
the MISRA and MAAB check groups.

setMetricIDs(complianceContainerWidgets(3), ...
({'mathworks.metrics.ModelAdvisorCheckIssues. SYSTEM By Task misra c',...
"'mathworks.metrics.ModelAdvisorCheckIssues.maab'}));
complianceContainerWidgets(3).Labels = {'MISRA', 'MAAB'};

12. To run the Metrics Dashboard at this point in the example, uncomment out the following lines of
code. The save commands serialize the API information to XML files. The
slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active configuration objects.

save(metricconfig, 'FileName', 'MetricConfig.xml");
save(dashboardconfig, 'Filename', 'DashboardConfig.xml');
slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

o° o° o° o°

14. To open the Metrics Dashboard, uncomment this code.
% metricsdashboard sf car

15. Click the All Metrics button and run all metrics. The Metrics Dashboard displays results for the
MISRA checks instead of the High Integrity checks.

Customize Metrics Dashboard Layout and Functionality

4\ Metrics Dashboard - O X
METRICS DASHEOQARD
'.j @ L\\) D é> Show:
Open Options | Mon-Compile | All Metrics | Al -
- - Metrics
EILEY RUN | THRESHOLDS | a
SIZE
sf_car
Created by: The MathWorks, Inc. Revision: 1 Models 22 MATLAB LOC 0 0
1.123 63
Collected 1/14/2019, 9:03:00 2 -
0,?; e AM Warnings Blocks 1 Files 17 stateflow LOC System Interface
MODELING GUIDELINE COMPLIANCE @ ARCHITECTURE
Actual Reuse
’ > ’ » v
Potential Reuse
b 0% 20% 40% 60% 80% 100%
76.9% 70.8%
MISRA MAAB

85 Model Complexity I
Blocks II

3

— -

MISRA MAAE
Model Advisor Check Issues
Stateflow LOC
0 20 40 60 80 100
Code Analyzer Diagnostic MATLAB LOC I
Warnings Warnings

16. Close the Metrics Dashboard.
Add a Custom Metric to Dashboard

Create a custom metric that counts nonvirtual blocks. To display this metric on the Metrics
Dashboard, specify a widget. Add it to the size group.

1. Using the createNewMetricClass function, create a new metric class named
nonvirtualblockcount. The function creates a file, nonvirtualblockcount.m, in the current
working folder. The file contains a constructor and empty metric algorithm method. For this example,
make sure you are in a writable folder.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2. To write the metric algorithm, open the nonvirtualblockcount.m file and add the metric to the
file. For this example, the file nonvirtualblockcount orig.m contains the logic to create a metric
that counts the nonvirtual blocks. Copy this file to the to nonvirtualblockcount.m.

5-43

5 Model Metrics

5-44

copyfile nonvirtualblockcount orig.m nonvirtualblockcount.m f

3. Register the new metric in the metric repository.
[id metric,err msg] = slmetric.metric.registerMetric(className);

4. Remove the widget that represents the Simulink block count metric. This widget is the first one in
the size group. The size group is second in the layoutWidget array.

sizeGroup = layoutWidget(2);
sizeGroupWidgets = sizeGroup.getWidgets();
sizeGroup.removeWidget(sizeGroupWidgets(1));

5. Add a widget that displays the nonvirtual block count metric. For custom widgets, the default
visualization type is single value. If you want to use a different visualization type, specify a different
value for the VisualizationType property.

newWidget = sizeGroup.addWidget('Custom', 1);
newWidget.Title=("'Nonvirtual Block Count');
newWidget.setMetricIDs('nonvirtualblockcount');
newWidget.setWidths(slmetric.dashboard.Width.Medium);
newWidget.setHeight(70);

6. Specify whether there are lines separating the custom widget from other widgets in the group.
These commands specify that there is a line to the right of the widget.

.top = false;

.bottom = false;

.left= false;

.right= true;
ewWidget.setSeparators([s, s, s, s]);

S0 nun

7. To run the Metrics Dashboard at this point in the example, uncomment out the following lines of
code. The save commands serialize the API information to XML files. The
slmetric.config.setActiveConfiguration and
slmetric.dashboard.setActiveConfiguration commands set the active configuration objects.

save(metricconfig, 'FileName', 'MetricConfig.xml');

save(dashboardconfig, 'Filename', 'DashboardConfig.xml"');
slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

o° o° o° o°

o

. To open the Metrics Dashboard, uncomment this code.

% metricsdashboard sf car

9. Click the All Metrics button and run all metrics. The Metrics Dashboard displays results for the
nonvirtual block count metric instead of the Simulink block count metric.

Customize Metrics Dashboard Layout and Functionality

4\ Metrics Dashboard

Model Advisor Check Issues
Stateflow LOC

Code Analyzer Diagnostic
Warnings Warnings MATLAB LOC

Nonvirtual Block Count

METRICS DASHEOQARD
i b ;-
(8| DB D s
e optors oo A
Dpv mv Metrics
FILE | RUN | THRESHOLDS |
SIZE

sf_car

Created by: The MathWorks, Inc. Revision:

1.123

Collected 1/14/2019, 9:15:10 2

on: AM Warnings

MODELING GUIDELINE COMPLIANCE @ ARCHITECTURE
Actual Reuse
r > r Potential Reuse
<
76.9% 70.8%
MISRA MAAB
85 Model Complexity
Blocks
3
— -
MISRA MAAE

4|

22 MATLAB LOC 0 - 0

17 stateflow LOC System Interface

20% 40% 60% 80% 100%

20 40 60 80 100
20 40 60 80 100

20 40 60 80 100

10. Close the Metrics Dashboard.

Add Metric Thresholds

For the nonvirtual block count and MISRA metrics, specify metric threshold values. Specifying these
values enables you to access the quality of your model by categorizing your metric data as follows:

* Compliant — Metric data that is in an acceptable range.

* Warning — Metric data that requires review.

* Noncompliant — Metric data that requires you to modify your model.

1. Access the slmetric.config.ThresholdConfiguration object in the
slmetric.config.Configuration object metricconfig. Create the corresponding
slmetric.config.ThresholdConfiguration object (TC) in the base workspace.

TC=getThresholdConfigurations(metricconfig);

5-45

5 Model Metrics

2. Add two slmetric.config.Threshold objects to TC. Each slmetric.config.Threshold
object contains a default slmetric.config.Classification object that is compliant. Specify the
compliant metric ranges.

Tl=addThreshold(TC, 'mathworks.metrics.ModelAdvisorCheckIssues. SYSTEM By Task misra c',...
'AggregatedValue');

C=getClassifications(T1);

C.Range.Start=-inf;

C.Range.End=0;

C.Range.IncludeStart=0;

C.Range.IncludeEnd=1;

T2=addThreshold(TC, 'mathworks.metrics.ModelAdvisorCheckCompliance. SYSTEM By Task misra c',...
'AggregatedValue');

C=getClassifications(T2);

C.Range.Start=1;

C.Range.End=inf;

C.Range.IncludeStart=1;

C.Range.IncludeEnd=0;

3. For each slmetric.config.Threshold object, specify the Warning ranges.

C=addClassification(T1l, 'Warning');
C.Range.Start=0;

C.Range.End=inf;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T2, 'Warning');
C.Range.Start=-inf;

C.Range.End=1;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=0;

These commands specify that if the MISRA checks have issues, the model status is warning. If there
are no issues, the model status is compliant.

4. Add a third slmetric.config.Threshold object to TC. Specify compliant, warning, and
noncompliant ranges for this slmetric.config.Threshold object.

T3=addThreshold(TC, 'nonvirtualblockcount', 'AggregatedValue');
C=getClassifications(T3);

C.Range.Start=-inf;

C.Range.End=20;

C.Range.IncludeStart=1;

C.Range.IncludeEnd=1;

C=addClassification(T3, 'Warning');
C.Range.Start=20;

C.Range.End=30;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T3, 'NonCompliant');
C.Range.Start=30;

C.Range.End=inf;

C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

5-46

Customize Metrics Dashboard Layout and Functionality

These commands specify that the compliant range is less than or equal to 20. The warning range is
from 20 up to but not including 30. The noncompliant range is greater than 30.

5. Save the configuration objects. These commands serialize the API information to XML files.

save(metricconfig, 'FileName', 'MetricConfig.xml');

save(dashboardconfig, 'Filename', 'DashboardConfig.xml"');

6. Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd,
slmetric.dashboard.setActiveConfiguration(fullfile(pwd,

7. For your model, open the Metrics Dashboard.

metricsdashboard sf car

'MetricConfig.xml'));
'DashboardConfig.xml'));

4\ Metrics Dashboard

METRICS DASHEOQARD

(] @ |> & Show:

Open Optns NorCanple Aecs

- - Metrics

[FE= | RUN | THRESHOLDS
sf_car

Created by: The Math\Works, Inc. Revision:

1123

Collected on: 1/14/2019, 9:15:10 AM

MODELING GUIDELINE COMPLIANCE

(2

76.9%
MISRA

3
L

MISRA

(7.

70.8%
MAAB

85

Model Advisor Check Issues

Code Analyzer
Warnings

Diagnostic
Warnings

@ size

15

Nonvirtual Block Count

@ ARCHITECTURE

Actual Reuse

Potential Reuse

Model Complexity I
Blocks II

Stateflow LOC I

MATLAB LOC I

22 MATLAB LOC

17 Stateflow LOC

40% 60%

40 60

40 60

40 &0

40 60

0-0

System Interface

80%

100

100

100

100

»l

100%

5-47

5 Model Metrics

5-48

For the MISRA check compliance issues, the gauge is yellow because 76% of the checks pass. Any
percentage less than 100% is a warning. The bar chart also displays a yellow because the model
contains three MISRA check issues. Any number greater than zero is a warning.

The Nonvirtual Block Count widget is in the compliant range because there are 15 nonvirtual
blocks.

8. To reset the configuration and unregister the metric, uncomment and execute these commands:

slmetric.metric.unregisterMetric(className);
slmetric.dashboard.setActiveConfiguration(""’
slmetric.config.setActiveConfiguration('"');

);

o° o o°

See Also
slmetric.dashboard.Configuration | slmetric.config.Configuration

More About
. “Collect Model Metrics”
. “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

Compare Model Complexity and Code Complexity Metrics

Compare Model Complexity and Code Complexity Metrics

Analyze the complexity of your system by using the cyclomatic complexity metrics. The metrics
indicate the structural complexity of a system by measuring the number of linearly independent paths
in the system. By limiting the cyclomatic complexity of your system, you can make it more readable,
maintainable, and portable. You can measure the cyclomatic complexity for both your model and the
code generated from your model. Note that differences between the code and the model may result in
different levels of cyclomatic complexity. To measure the cyclomatic complexity of a model, use the
Metrics Dashboard and the “Cyclomatic complexity metric”.

Metric Threshold Values

Code Complexity Threshold

When you develop an algorithm by hand-writing code, you assess the readability of the code by
measuring the cyclomatic complexity of the code. Code that has higher cyclomatic complexity can be
more difficult to understand and maintain. To standardize code maintainability, your organization may
select a threshold value that limits the cyclomatic complexity of your code. For example, if you write
code that conforms to the “HIS Code Complexity Metrics” (Polyspace Bug Finder), you check that the
cyclomatic complexity of the code is at or below the threshold of 10.

Model Complexity Threshold

When you use the model-based design workflow to model an algorithm and generate code, you can
assess the readability of the system by using the cyclomatic complexity metric of the model instead of
measuring the cyclomatic complexity of the generated code. The graphical modeling of Simulink
allows you to manage complex algorithms better than traditional hand code does. To account for this,
the default cyclomatic complexity metric threshold for the model is 30, which is higher than the
standard code complexity threshold of 10. To change the model metric threshold value, see
“Customize Metrics Dashboard Layout and Functionality” on page 5-39.

Comparing Code and Model Complexity Metric Results

The cyclomatic complexity of a model can be higher or lower than the cyclomatic complexity of the
generated code. This variation depends on your model and on your code generation customizations.
Some of the patterns that generate different complexity measurements include:

* Code generation optimizations that eliminate extra logic that the model contains. These
optimizations can reduce the complexity of the code.

* Error checks in the generated code that the model metric analysis does not consider. These error
checks can increase the complexity of the code.

» Additional logic in the generated code for a specific target. This logic can increase the complexity
of the code.

For example, consider the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.
path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...

'verification', 'src', 'cruise');
run(fullfile(path, 'slVerificationCruiseStart'))

5-49

5 Model Metrics

2 From the project, open the model folder and open
simulinkCruiseErrorAndStandardsExample.

a ™
(1 ';, P CruiseOnOff
: —£ CruiseOnOff
CruiseOnOff
(2) » Brake Snaegec -Eengaged @
—£ Brake - engaged
Brake
v Speed
Speed Epee
@ —£ CoastSetSw
CoastSetSw —£ tspeed @
tspeed
@ —£ AccelResSw
AccelResSw

Compute target speed

The model contains the chart Compute target speed. To generate and analyze code for the chart by
using Polyspace, see “Analyze Code and Test Software-in-the-Loop” on page 2-12.

5-50

Compare Model Complexity and Code Complexity Metrics

OFF

en:
engaged = false;

tspead = 0;
CruksaOnOff]
[=CruisaOnOdf]
CRUISE ™
(ON
. an: engaged = lrua;
STANDBY
Accal
en: X
engaged=false, ['_5"‘"“0 e antry: tspeed = tspeed + incdec;
._-»pucc > nlaxlspuud.n . [after(incdecthaldrate”....
Spaad < mintspead) uintB{10) tick)]
=]
1
[hasChangedTolAccelResSw trua) [tAccelRasSw || ...
&& speed < maxtspeead] Ispead == maxtspesad]
‘Il g [hasChangedTa...
[-Brake && . [hasChangedTa... Slaady (CoastSetSw.trua)] =
Spead <= maxtspead && . (AccelRasSw true)... —f f—————»
Spaad >= mintspead] A& tspeadi=0] {tspeed = Speead:}
O i '
2 J
2]
[hasChangedTo...
(CoastSatSw trua) ... ['CoastSelSw || ...
&& tspaed = mintspead] Ispeed < mintspeed]
v 1
[hasChangedTo... Coast .
(CoastSatSw trua)] T
™ enlry: Ispeed = speed - incdec, [after(incdechaldrate®...
= wiirtB({ 10), tick)]
2——0
— -

The reports that Polyspace generates for the code include code metrics such as cyclomatic
complexity. The generated step function for the chart has a cyclomatic complexity of 20.

To measure cyclomatic complexity of the model, use the Metrics Dashboard:

1 Open the Metrics Dashboard. In the Apps gallery, click Metrics Dashboard.
2 Click All Metrics.

3 To view detailed cyclomatic complexity results, click the Model Complexity widget.

The chart in the model has a cyclomatic complexity of 30. For this chart, the code generator
optimizes the code by consolidating logic, so the generated code has a lower cyclomatic complexity
than the chart in the model. In other cases, a model may have lower cyclomatic complexity than its
generated code. When you maintain the model for code generation, use the cyclomatic complexity of
the model to measure your system's complexity.

See Also
“Cyclomatic complexity metric”

5-51

5 Model Metrics

More About
. “Analyze Code and Test Software-in-the-Loop” on page 2-12

5-52

Create Model Advisor Checks

6 Create Model Advisor Checks

Overview of the Customization File for Custom Checks

A customization file is a MATLAB file that you create and name sl customization.m. The
sl customization.m file contains a set of functions for registering and defining custom checks,
tasks, and groups. To set up the sl _customization.m file, follow the guidelines in this table.

Function

Description

When Required

sl customization()

Registers custom checks, tasks,
folders, and callbacks with the
Simulink customization manager at
start-up. See “Defining Custom
Model Advisor Checks Workflow” on
page 6-34.

Required for programmatic
customizations to the Model
Advisor.

One or more check definitions

Defines custom checks. See
“Defining Custom Model Advisor
Checks Workflow” on page 6-34.

Required for custom checks and to
add custom checks to the By
Product folder.

If the By Product folder is not
displayed in the Model Advisor
window, select Show By Product
Folder from the Settings >
Preferences dialog box.

Check callback functions

Defines the actions of the custom
checks. See “Defining Custom
Model Advisor Checks Workflow” on
page 6-34.

Required for custom checks. You
must write one callback function for
each custom check

One or more calls to check input Specifies input parameters to Optional
parameters custom checks. See “Define Check
Input Parameters” on page 6-36.
One or more calls to checklist views |Specifies calls to the Model Advisor |Optional
Result Explorer for custom checks.
One or more calls to check actions |Specifies actions the software Optional

performs for custom checks. See
“Defining Custom Model Advisor
Checks Workflow” on page 6-34.

This example shows a custom configuration of the Model Advisor that has custom checks defined in
custom folders and procedures. The selected check includes input parameters, list view parameters,

and actions.

6-2

Overview of the Customization File for Custom Checks

4 Model Advisar
4) By Product
4 [Demo
5] Check Simulink
[=] Check Simulink
=] Check model g
4 3 By Task
4 [Demo Factory Gro
5] Check Simulink
5] Check Simulink
=] Check model g
4 31 My Group
= Example task with
= Example task 2
= Example task 3
[+ [@ My Procedure

Example task with input parameter and auto-fix ability

Analysis
Example style three callback
Input Parameters

[skip font chedks.

Standard font size 12 Walid font Arial

»

Result: [_] NotRun

Click Run This Check.

Action
Click the button to update all blodks with specdified font

m

Fix block fonts

6-3

6 Create Model Advisor Checks

Common Utilities for Creating Checks

When you create a custom check, there are common Simulink utilities that you can use to make the
check perform different actions. Following is a list of utilities and when to use them. In the Utility
column, click the link for more information about the utility.

Utility

Used For...

find system

Getting handle or path to:

* Blocks
e Lines
¢ Annotations

When getting the object, you can:

* Specify a search depth
e Search under masks and libraries

get param/set param

Getting and setting system and block parameter
values.

Property Inspector

Getting object properties. First you must get a
handle to the object.

evalin

Working in the base workspace.

Simulink identifier (SID)

Identifying Simulink blocks, model annotations or
Stateflow objects. The SID is a unique number
within the model, assigned by Simulink. For
details, see “Locate Diagram Components Using
Simulink Identifiers” (Simulink).

Stateflow API (Stateflow)

Programmatic access to Stateflow objects.

6-4

Create Pass/Fail and Informational Model Advisor Checks

Create Pass/Fail and Informational Model Advisor Checks

This example demonstrates how to create two simple check types: a pass/fail check with no fix action
and an informational check. A basic pass/fail check finds and reports what the check is reviewing and
whether the check passes or fails. An informational check finds and displays a description of what the
check is reviewing and any references to applicable standards.

Create an sl_customization Function

In your working folder, create the s1_customization.m file. To register the custom checks, within
the s1_customization.m file, create an sl _customization(cm) function as shown here. This
function accepts one argument, a customization object. This customization manager object includes
the addModelAdvisorCheckFcn method for registering the custom checks. The input to this
method is a handle to the function (defineModelAdvisorChecks) that contains calls to two check
definition functions. These functions contain the definitions of the simple pass/fail check and the
informational check.

function sl customization(cm)
% SL CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2019 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorCheck) ;

function defineModelAdvisorCheck
definePassFailCheck
defineInformationCheck

Create the Check Definition Function for a Pass/Fail Check with No Fix
Action

In this section, you create the check definition function that checks whether a Constant block value is
a number or a letter. If the value is a number, the check produces a warning. If the value is a letter,
the check passes.

This check uses the DetailStyle type of callback function. This style allows you to view results by
block, subsystem, or recommended action. Applying this style produces default formatting, so that
you do not have to use the ModelAdvisor.FormatTemplate class or the other Model Advisor
formatting APIs to format the results that appear in the Model Advisor. You specify this style as an
input to the setCallbackFcn method.

Create a new file, definePassFailCheck.m, and enter the function shown here:

function definePassFailCheck

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('simplePassFailCheck');

rec.Title = 'Check Constant block usage';

rec.TitleTips = ['Warn if Constant block value is a number; Pass if' ...
' Constant block value is a letter'];

rec.setCallbackFcn(@simplePassFailCheck, 'None', 'DetailStyle')

6 Create Model Advisor Checks

6-6

mdladvRoot.publish(rec, 'Demo');

% --- Callback function that checks Constant blocks
function simplePassFailCheck(system,Check0Obj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
all constant blk=find system(system, 'LookUnderMasks', 'all’',...
'FollowLinks', 'on', 'BlockType', 'Constant');
violationBlks=find system(all constant blk, 'RegExp','On','Value','~[0-9]");
if isempty(violationBlks)
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.IsInformer = true;
ElementResults.Description = 'Identify Constant blocks with a value that is a number.';
ElementResults.Status = 'All Constant blocks have have a value that is a letter.';
mdladvObj.setCheckResultStatus(true);
else
ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
for i=1:numel (ElementResults)
ElementResults(i).setData(violationBlks{i});

ElementResults(i).Description = 'Identify Constant blocks with a value that is a number.';
ElementResults(i).Status = 'The following Constant blocks have values that are numbers:';
ElementResults(i).RecAction = 'Change the Constant block value to a letter.';

end
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);

end

CheckObj.setResultDetails (ElementResults);

This check identifies Constant block values that are numbers and produces a warning, but it does not
provide a fix action. For more information on how to create a check definition function with a fix, see
“Create a Pass/Fail Model Advisor Check with Fix Action” on page 6-9.

Create the Check Definition Function for an Informational Check

In this section, you create a check definition function for an informational check that finds and
displays the model configuration and checksum information.

For an informational check, the Model Advisor displays the overall check status, but the status is not
in the result. In addition, an informational check does not include the following items in the results:

* A description of the status.

* The recommended action to take when the check does not pass.
* Subcheck results.

This check definition function uses the StyleOne type of callback function, so you must use the
Model Advisor formatting APIs to format results that appear in the Model Advisor. You specify
StyleOne as an input to the setCallbackFcn method.

Create a new file, defineInformationCheck.m, and enter the function shown here:

function defineInformationCheck

% Create ModelAdvisor.Check object and set properties.

rec = ModelAdvisor.Check('com.mathworks.sample.infocheck');

rec.Title = 'Identify model configuration and checksum information';
rec.TitleTips = 'Display model configuration and checksum information';
rec.setCallbackFcn(@modelVersionChecksumCallbackUsingFT, 'None', 'StyleOne"');

% Publish check into Demo group.
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec, 'Demo');

Create Pass/Fail and Informational Model Advisor Checks

function resultDescription = modelVersionChecksumCallbackUsingFT(system)
resultDescription = [];

system = getfullname(system);

model = bdroot(system);

% Format results in a list using Model Advisor Result Template API.
ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
setInformation(ft, 'Display model configuration and checksum information');

% Add See Also section for references to standards.
docLinkSfunction{1l} = {['IEC 61508-3, Table A.8 (5)'

" '"'Software configuration management'' ']};
setRefLink(ft,docLinkSfunction);

% If running the Model Advisor on a subsystem, add note to description.
if strcmp(system, model) == false
setInformation(ft,{['NOTE: The Model Advisor is reviewing a' .
' sub-system, but these results are based on root-level settings.']});
end

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% If error is encountered, use these values.

mdlver = 'Error - could not retrieve Version';
mdlauthor = 'Error - could not retrieve Author';
mdldate = 'Error - could not retrieve Date';
mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information.
ry
mdlver = get param(model, 'ModelVersion');
mdlauthor = get param(model, 'LastModifiedBy"');
mdldate = get param(model, 'LastModifiedDate"');

~+

mdlsum = Simulink.BlockDiagram.getChecksum(model);
mdlsum = [num2str(mdlsum(1l)) ' ' num2str(mdlsum(2)) "' '
num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];
mdladvObj.setCheckResultStatus(true); % init to true
catch err

mdladvObj.setCheckResultStatus(false);
setSubResultStatusText(ft,err.message);
resultDescription{end+1} = ft;
return

end

1bStr ='
";
resultStr = ['Model Version: ' mdlver 1lbStr 'Author: ' mdlauthor 1bStr ...
'Date: ' mdldate 1bStr 'Model Checksum: ' mdlsum];

% Display the results
setSubResultStatusText(ft, resultStr);

6 Create Model Advisor Checks

6-8

% The check does not have subresults and does not need a bar.
setSubBar(ft,0);
resultDescription{end+1} = ft;

end

Run the Custom Checks in the Model Advisor

1 In the Command Window, enter:
Advisor.Manager.refresh customizations

2 Open the model sldemo_fuelsys by typing this command in the MATLAB command prompt:
sldemo_ fuelsys

3 Inthe Modeling tab, select Model Advisor. A System Selector — Model Advisor dialog box
opens. Click OK.

4 In the left pane, select By Product > Demo > Identify model configuration and checksum
information.

5 Click Run This Check.
The check passes and displays the information.

6 In the left pane, select By Product > Demo > Check Constant block usage.

7 Click Run This Check.
The check produces a warning because several blocks contain values that are numbers. The
results contain links to these blocks. The result displays a Recommended Action.

8 Follow the Recommended Action to fix the Constant blocks.

See Also

ModelAdvisor.FormatTemplate | ModelAdvisor.Check | ModelAdvisor.Check.CallbackContext |
ModelAdvisor.FormatTemplate

More About

“Defining Custom Model Advisor Checks Workflow” on page 6-34
“Create a Pass/Fail Model Advisor Check with Fix Action” on page 6-9
“Create and Deploy a Model Advisor Custom Configuration” on page 7-25

Create a Pass/Fail Model Advisor Check with Fix Action

Create a Pass/Fail Model Advisor Check with Fix Action

This example shows how to create a customized Model Advisor pass/fail check with a fix action. When
a model does not contain a check violation, the results contain the check description and result
status. When a model contains a check violation, the results contain the check description, result
status, and the recommended action to fix the issue. This example adds a custom check to a Model
Advisor By Product > Demo subfolder.

For this example, the custom check identifies blocks whose names do not appear below the blocks.
The fix action is to make the block names appear below the blocks.

This example also shows you how to collect results into groups that violate a check (that is, detailed
result collections), such as blocks in a subsystem. In the Model Advisor, you can review results by
selecting:

* View By > Recommended Action — When a check is violated, this view shows a list of model
elements that violate the check. When there is no violation, this view provides a brief description
stating that the check was not violated.

* View By > Subsystem — This view shows a table of model elements that violate the check,
organized by model or subsystem (when applicable).

* View By > Block — This view provides a list of check violations for each block.

When a check does not pass, the results include a hyperlink to each model element that violates the
check. Use these hyperlinks to easily locate areas in your model or subsystem. The code for this
example consists of an s1_customization.m file and a defineDetailStyleCheck.m file.

Create the sl_customization File

In your working folder, create an sl _customization.m file.

2 To register the custom checks, create an s1_customization(cm) function as shown here. This
function accepts one argument, a customization manager object. The customization manager
object includes the addModelAdvisorCheckFcn method for registering the custom check. The
input to this method is a handle to the check definition function.

function sl customization(cm)
SL CUSTOMIZATION - Model Advisor customization demonstration.

o°

% Copyright 2019 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineDetailStyleCheck);

function defineDetailStyleCheck;

Create the Check Definition File

The check definition function defines the check and fix actions that the Model Advisor takes when you
run the check. For this example, the completed check definition function file is
defineDetailStyleCheck.m, and it contains this code:

6-9

6 Create Model Advisor Checks

6-10

function defineDetailStyleCheck
mdladvRoot = ModelAdvisor.Root;

% Create ModelAdvisor.Check object and set properties.

rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names"';
rec.setCallbackFcn(@DetailStyleCallback, 'None', 'DetailStyle');

% Create ModelAdvisor.Action object for setting fix operation.
myAction = ModelAdvisor.Action;

myAction.Name='Make block names appear below blocks';
myAction.Description='Click the button to place block names below blocks';
rec.setAction(myAction);

myAction.setCallbackFcn(@ActionCB);

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

end

% This callback function uses the DetailStyle CallbackStyle type.

O e m e e e

function DetailStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

% Find all blocks whose name does not appear below blocks
violationBlks = find system(system, 'Type','block',...
'NamePlacement', 'alternate’, ...
'ShowName', 'on');
if isempty(violationBlks)
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.IsInformer = true;
ElementResults.Description = 'Identify blocks where the name is not displayed below the block.';
ElementResults.Status = 'All blocks have names displayed below the block.';
mdladvObj.setCheckResultStatus(true);
else
ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
for i=1:numel(ElementResults)
ElementResults(i).setData(violationBlks{i});

ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block."';

ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';

ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';
end

mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails (ElementResults);
end

function result = ActionCB(taskobj)

mdladvObj = taskobj.MAObj;

checkObj = taskobj.Check;

resultDetailObjs = checkObj.ResultDetails;

for i=1:numel(resultDetailObjs)
% take some action for each of them
block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
set param(block, 'NamePlacement', 'normal');

end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);
end

The following steps explain how to create completed the defineDetailStyleCheck.m file.
1 Create a ModelAdvisor.Root object.

mdladvRoot = ModelAdvisor.Root;

Create a Pass/Fail Model Advisor Check with Fix Action

Create a ModelAdvisor.Check object and define the unique check ID. For this check, the ID is
com.mathworks.sample.detailStyle.

rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');

Specify the ModelAdvisor.Check.Title and ModelAdvisor.Check.TitleTips properties.

rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';

Use the setCallbackFcn method to call the callback function. The setCallbackFcn method
arguments are a handle to the callback function and the
ModelAdvisor.Check.CallbackStyle property value. For this example, the CallbackStyle
property value is DetailStyle. This style allows you to view results by block, subsystem, or
recommended action. Applying this style produces default formatting, so that you do not have to
use the ModelAdvisor.FormatTemplate class or the other Model Advisor formatting APIs to
format the results that appear in the Model Advisor.
rec.setCallbackFcn(@DetailStyleCallback, 'None', 'DetailStyle');

To set the fix operation, create a ModelAdvisor.Action object and define its properties.
myAction = ModelAdvisor.Action;

myAction.setCallbackFcn(@ActionCB);

myAction.Name='Make block names appear below blocks';
myAction.Description='Click the button to place block names below blocks';

Use the setCallback method to call the action callback function. The input to this method is a
handle to the action callback function.

myAction.setCallbackFcn(@ActionCB);
Use the setAction method to set the action for the check.

rec.setAction(myAction);

Use the publish method to publish the check to a folder within the By Product folder. For this
example, the folder name is Demo.

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

Create the Check Callback Definition Function

1

In the defineDetailStyleCheck.m file, create the check callback function. In this example,
the function name is DetailStyleCallback. The inputs to this function are a
ModelAdvisor.CheckObject and the path to the model or system that the Model Advisor
analyzes.

function DetailStyleCallback(system, CheckObj)

To create a Simulink.ModelAdvisor object, use the
Simulink.ModelAdvisor.getModelAdvisor method.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

To identify blocks that violate the check, use the find system function. For each model
element, this function creates a ModelAdvisor.ResultDetail object.

violationBlks = find system(system, 'Type','block',...
"NamePlacement', 'alternate’, ...
‘ShowName', 'on');

Write code for the case when the find system function does not identify blocks whose names
do not appear below the block. In this case, ElementResults is one instance of a
ModelAdvisor.ResultDetail object and provides information content only. The method
specifies that there is no check violation and displays Passed in the Model Advisor.

6-11

6 Create Model Advisor Checks

if isempty(violationBlks)
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.IsInformer = true;
ElementResults.Description = 'Identify blocks where the name is not displayed below the block."';
ElementResults.Status = 'All blocks have names displayed below the block.';
mdladvObj.setCheckResultStatus(true);

5 Write code for the case when the find system function returns a list of blocks whose names do
not appear below the block (violationBlks). ElementResults includes each

ModelAdvisor.ResultDetail object that violates the check and provides a recommended
action message for fixing the check violation.

For this case, the setCheckResultStatus method specifies the check violation and displays
Warning or Failed in the Model Advisor. The
Simulink.ModelAdvisor.setActionEnable(true) method enables the ability to fix the
check violation issue from the Model Advisor.

else
ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
for i=1l:numel(ElementResults)
ElementResults(i).setData(violationBlks{i});

ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';

end
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);
end

6 To associate the results with a check object, use the setResultDetails method.

CheckObj.setResultDetails (ElementResults);
end

Create the Action Callback Definition Function

1 Inthe defineDetailStyleCheck.mfile, create the action callback function. In this example,
the function name is sampleActionCB. The input to this function is a ModelAdvisor.Task
object.
function result = ActionCB(taskobj)

2 Create handles to Simulink.ModelAdvisor and ModelAdvisor.Check objects.
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;

3 Create an array of ModelAdvisor.ResultDetail objects for storing the information for blocks
that violate the check.
resultDetailObjs = checkObj.ResultDetails;

4 Write code that changes the block name location to below the block.

for i=1l:numel(resultDetailObjs)
% take some action for each of them
block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
set param(block, 'NamePlacement', 'normal');
end
result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');

5 Disable the Action box.

mdladvObj.setActionEnable(false);

6-12

Create a Pass/Fail Model Advisor Check with Fix Action

Run the Check

Save the sl _customization.mand defineDetailStyleCheck.m files.
2 Inthe MATLAB command window, enter:

Advisor.Manager.refresh customizations
3 From the MATLAB window, open the sldemo fuelsys model.

In the top model, right-click the Engine Speed block and select Rotate & Flip > Flip Block
Name.

5 Openthe fuel rate control subsystem. Right-click the validate sample time block and
select Rotate & Flip > Flip Block Name.

Return to the top model and save as example sldemo fuelsys.

6 Inthe Modeling tab, select Model Advisor. A System Selector — Model Advisor dialog box
opens. Click OK. The Model Advisor opens.

7 In the left pane, select By Product > Demo > Check whether block names appear below
blocks.

Note If the By Product folder is not displayed in the Model Advisor window, select Settings >
Preferences > Show By Product Folder

Select Run This Check. The Model Advisor check fails for the blocks you changed.
Review the results by selecting one of the View by options.

6-13

6 Create Model Advisor Checks

The report provides a recommended action for each check. You can click the hyperlink path to
open the violating block in the model editor. For example:

Check whether block names appear below blocks (recommended check style)
Analysis

Example new style callback (recommended check style)

Run This Check

Result: /By Warning View by | Subsystem -

Identify blocks where the name is not displayved below the block. ~

The following blocks have names that do not display below the blocks:

Subsystem
example sldemo fuelsvs ../ Throttle Angle Fault Switch
example sldemo fuelsvs/fuel rate control .../fuel rate control/validate sample time

Recommended Action
Change the location such that the block name is below the block.

Action

Click the button to place block names below blocks

Make block names appear below blocks

10 Follow the recommended action for fixing the violating blocks by using one of these methods:

Update each violation individually by double-clicking the hyperlink to open the block. Right-
click the block and select Rotate & Flip > Flip Block Name.

* Select the Make block names appear below blocks button. The Model Advisor

automatically fixes the issues in the model. Notice that the button is dimmed after the
violations are fixed.

11 Save the model and rerun the Model Advisor check. The check passes.

Check whether block names appear below blocks (recommended check style)
Analysis

Example new style callback (recommended check style)

Run This Chedk

Result:) Passed View by | Recommended Action =

ldentify blocks where the name is not displayved below the block.

All blocks have names displayed below the block.

6-14

Create a Pass/Fail Model Advisor Check with Fix Action

See Also

ModelAdvisor.FormatTemplate | ModelAdvisor.Check | ModelAdvisor.Check.CallbackContext |
ModelAdvisor.FormatTemplate

More About
. “Defining Custom Model Advisor Checks Workflow” on page 6-34
. “Create Pass/Fail and Informational Model Advisor Checks” on page 6-5

. “Create and Deploy a Model Advisor Custom Configuration” on page 7-25

6-15

6 Create Model Advisor Checks

Create Model Advisor Check for Model Configuration
Parameters

6-16

To verify the configuration parameters for your model, you can create a configuration parameter
check.

Decide which configuration parameter settings to use for your model. If desired, review the modelling
guidelines:

* MathWorks Advisory Board (MAB) Modeling Guidelines (Simulink)

High-Integrity System Modeling Guidelines (Simulink)

Code Generation Modeling Guidelines (Simulink)

1 Create an XML data file containing the configuration parameter settings you want to check. You
can use Advisor.authoring.generateConfigurationParameterDataFile or manually
create the file yourself.

Register the model configuration parameter check using an sl customization.m file.
Run the check on your models.

Create a Data File for a Configuration Parameter Check

This example shows how to create a data file that specifies configuration parameter values in the
Diagnostics pane. A custom check warns when the configuration parameters values do not match
the values defined in the data file.

At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the Diagnostics
pane, set the configuration parameters as follows:

* Algebraic loop to none
* Minimize algebraic loop to error
* Block Priority Violation to error

Use the Advisor.authoring.generateConfigurationParameterDataFile function to create a
data file specifying configuration parameter constraints in the Diagnostics pane. Also, to create a
check with a fix action, set FixValue to true. At the command prompt, type:

model="vdp"';

dataFileName = 'ex DataFile.xml';

Advisor.authoring.generateConfigurationParameterDataFile(dataFileName, ...
model, 'Pane', 'Diagnostics', 'FixValues', true);

In the Command Window, select ex DataFile.xml. The data file opens in the MATLAB editor.

* The Minimize algebraic loop (ArtificialAlgebraicLoopMsg) configuration parameter
tagging specifies a value of error with a fixvalue of error. When you run the configuration
parameter check using ex DataFile.xml, the check fails if the Minimize algebraic loop
setting is not error. The check fix action modifies the setting to error.

* The Block Priority Violation (BlockPriorityViolationMsg) configuration parameter tagging
specifies a value of error with a fixvalue of error. When you run the configuration
parameter check using ex DataFile.xml, the check fails if the Block Priority Violation
setting is not error. The check fix action modifies the setting to error.

matlab: vdp

Create Model Advisor Check for Model Configuration Parameters

In ex DataFile.xml, edit the Algebraic loop (AlgebraicLoopMsg) parameter tagging so that the
check warns if the value is none. Because you are specifying a configuration parameter that you do
not want, you need a NegativeModelParameterConstraint. Also, to create a subcheck that does
not have a fix action, remove the line with <fixvalue> tagging. The tagging for the configuration
parameter looks as follows:

<!-- Algebraic loop: (AlgebraicLoopMsg)-->
<NegativeModelParameterConstraint>
<parameter>AlgebraicLoopMsg</parameter>
<value>none</value>
</NegativeModelParameterConstraint>

In ex DataFile.xml, delete the lines with tagging for configuration parameters that you do not
want to check. The data file ex DataFile.xml provides tagging only for Algebraic loop, Minimize
algebraic loop, and Block Priority Violation. For example, ex DataFile.xml looks similar to:

<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://www.w3schools.com
MySchema.xsd">
<checkdata>
<!-- Algebraic loop: (AlgebraiclLoopMsg)-->
<NegativeModelParameterConstraint>
<parameter>AlgebraicLoopMsg</parameter>
<value>none</value>
</NegativeModelParameterConstraint>
<!--Minimize algebraic loop: (ArtificialAlgebraiclLoopMsg)-->
<PositiveModelParameterConstraint>
<parameter>ArtificialAlgebraicLoopMsg</parameter>
<value>error</value>
<fixvalue>error</fixvalue>
</PositiveModelParameterConstraint>
<!--Block priority violation: (BlockPriorityViolationMsg)-->
<PositiveModelParameterConstraint>
<parameter>BlockPriorityViolationMsg</parameter>
<value>error</value>
<fixvalue>error</fixvalue>
</PositiveModelParameterConstraint>
</checkdata>
</customcheck>

Verify the data syntax with Advisor.authoring.DataFile.validate. At the command prompt,
type:

dataFile = 'myDataFile.xml';
msg = Advisor.authoring.DataFile.validate(dataFile);

if isempty(msg)
disp('Data file passed the XSD schema validation.');
else

6-17

6 Create Model Advisor Checks

6-18

disp(msg);
end

Create Check for Diagnostics Pane Model Configuration Parameters

This example shows how to create a check for Diagnostics pane model configuration parameters
using a data file and an s1_customization.m file. First, you register the check using an
sl customization.m file. Using ex DataFile.xml, the check warns when:

* Algebraic loop is set to none
* Minimize algebraic loop is not set to error
» Block Priority Violation is not set to error

The check fix action modifies the Minimize algebraic loop and Block Priority Violation parameter
settings to error.

The check uses the ex_DataFile.xml data file created in “Create a Data File for a Configuration
Parameter Check” on page 6-16.

Close the Model Advisor and your model if either are open.

Use the following s1 customization.m file to specify and register check Example: Check model
configuration parameters.

function sl customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

%% defineModelAdvisorChecks
function defineModelAdvisorChecks

rec = ModelAdvisor.Check('com.mathworks.Checkl");
rec.Title = 'Example: Check model configuration parameters';
rec.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback...
(system)), 'None', 'StyleOne');
rec.TitleTips = 'Example check for model configuration parameters';
% --- data file input parameters
rec.setInputParametersLayoutGrid([1 11);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Data File';
inputParaml.Value = 'ex DataFile.xml';
inputParaml.Type = 'String’;
inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
rec.setInputParameters({inputParaml});

% -- set fix operation

act = ModelAdvisor.Action;

act.setCallbackFcn(@(task) (Advisor.authoring.CustomCheck.actionCallback...
(task)));

act.Name = 'Modify Settings';

act.Description = 'Modify model configuration settings.';

rec.setAction(act);

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

Create Model Advisor Check for Model Configuration Parameters

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1

rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';
rec.addCheck('com.mathworks.Checkl"');

mdladvRoot.publish(rec);

Create the Example: Check model configuration parameters. At the command prompt, enter:

Advisor.Manager.refresh customizations
At the command prompt, type vdp to open the van der Pol Equation model.

Right-click in the model window and select Model Configuration Parameters. In the Diagnostics
pane, set the configuration parameters as follows:

* Algebraic loop to none
* Minimize algebraic loop to warning
* Block Priority Violation to warning

In the Modeling tab, select Model Advisor to open the Model Advisor.

In the left pane, select By Task > Example: My Group > Example: Check model configuration
parameters. In the right pane, Data File is set to ex DataFile.xml.

Click Run This Check. The Model Advisor check warns that the configuration parameters are not set
to the values specified in ex_DataFile.xml. For configuration parameters with positive constraint
tagging (PositiveModelParameterConstraint), the recommended values are obtained from the
value tagging. For configuration parameters with negative constraint tagging
(NegativeModelParameterConstraint), the values not recommended are obtained from the
value tagging.

* Algebraic loop (AlgebraicLoopMsg) - the ex DataFile.xml tagging does not specify a fix
action for AlgebraicLoopMsg. The subcheck passes only when the setting is not set to none.

* Minimize algebraic loop(ArtificialAlgebraicLoopMsg) - the ex DataFile.xml tagging
specifies a subcheck with a fix action for ArtificialAlgebraicLoopMsg that passes only when
the setting is error. The fix action modifies the setting to error.

* Block priority violation (BlockPriorityViolationMsg) - the ex DataFile.xml tagging
specifies a subcheck with a fix action for BlockPriorityViolationMsg that does not pass when
the setting is warning. The fix action modifies the setting to error.

In the Action section of the Model Advisor dialog box, click Modify Settings. Model Advisor updates
the configuration parameters for Block priority violation and Minimize algebraic loop.

Run By Task > Example: My Group > Example: Check model configuration parameters. The
check warns because Algebraic loop is set to none.

In the right pane of the Model Advisor window, use the Algebraic loop (AlgebraiclLoopMsg)
link to edit the configuration parameter. Set Algebraic loop to warning or error.

6-19

matlab: vdp

6 Create Model Advisor Checks

6-20

Run By Task > Example: My Group > Example: Check model configuration parameters. The
check passes.

Data File for Configuration Parameter Check

You use an XML data file to create a configuration parameter check. To create the data file, you can
use Advisor.authoring.generateConfigurationParameterDataFile or manually create the
file yourself. The data file contains tagging that specifies check behavior. Each model configuration
parameter specified in the data file is a subcheck. The structure for the data file is as follows:

<?xml version="1.0" encoding="utf-8"7?>
<customcheck xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
<messages>
<Description>Description of check</Description>
<PassMessage>Pass message</PassMessage>
<FailMessage>Fail message</FailMessage>
<RecommendedActions>Recommended action</RecommendedActions>
</messages>
<checkdata>
<!--Command line name of configuration parameter-->
<PositiveModelParameterConstraint>
<parameter>Command-1line name of configuration parameter</parameter>
<value>Value that you want configuration parameter to have</value>
<fixvalue>Specify value for a fix action</fixvalue>
<dependson>ID of configuration parameter subcheck that must pass
before this subcheck runs</value>
</PositiveModelParameterConstraint>
<!-- Command line name of configuration parameter-->
<NegativeModelParameterConstraint>
<parameter>Command line name of configuration parameter</parameter>
<value>Value that you do not want configuration parameter to have</value>
<fixvalue>Specify value for a fix action</fixvalue>
<dependson>ID of configuration parameter subcheck that must pass
before this subcheck runs</value>
</NegativeModelParameterConstraint>
</checkdata>
</customcheck>

The <messages> tag contains:

* Description - (Optional) Description of the check. Displayed in Model Advisor window.
* PassMessage - (Optional) Pass message displayed in Model Advisor window.
* FailMessage - (Optional) Fail message displayed in Model Advisor window.

* RecommendedActions - (Optional) Recommended actions displayed in Model Advisor window
when check does not pass.

Note The <messages> tag is optional.
Advisor.authoring.generateConfigurationParameterDataFile does not generate
<messages> tagging.

In the <checkdata> tag, the data file specifies two types of constraints:
* PositiveModelParameterConstraint - Specifies the configuration parameter setting that you
want.

* NegativeModelParameterConstraint - Specifies the configuration parameter setting that you
do not want.

Create Model Advisor Check for Model Configuration Parameters

Within the tag for each of the two types of constraints, for each configuration parameter that you
want to check, the data file has the following tags:

parameter - Specifies the configuration parameter that you want to check. The tagging uses the
command line name for the configuration parameter. For example:

<PositiveModelParameterConstraint>
<parameter>BlockPriorityViolationMsg</parameter>
</PositiveModelParameterConstraint>
<NegativeModelParameterConstraint>
<parameter>AlgebraiclLoopMsg</parameter>
</NegativeModelParameterConstraint>

value - Specifies the setting(s) for the configuration parameter. You can specify more than one
value tag.

When using PositiveModelParameterConstraint, value specifies the setting(s) that you
want for the configuration parameter. For NegativeModelParameterConstraint, value
specifies the setting(s) you that do not want for the configuration parameter.

You can specify the value using a format in this table.

Type Format Example

Scalar value |<value>xyz</value> In this example, constraint
NegativeModelParameterConstraint
warns when the configuration parameter
settings for configuration parameter is not
error or none.

<NegattiveModelParameterConstraint>
<value>error</value>
<value>none</value>

</NegativeModelParameterConstraint>

Structure or |<value> In this example, constraints

object <paraml>xyz</paraml> |pPositiveModelParameterConstraint
<param2>yza</param2> |warns when the configuration parameter

</value> settings are not a valid structure:

<PositiveModelParameterConstraint>
<value>
<double>a</double>
<single>b</single>
</value>
</PositiveModelParameterConstraint>

Array <value> In this example, constraint
<element>value</elemenNegativeModelParameterConstraint
<element>value</elemengrns when the configuration parameter

</value> settings are an invalid array:

<NegativeModelParameterConstraint>
<value>
<element>A</element>
<element>B</element>
</value>
</NegativeModelParameterConstraint>

6-21

6 Create Model Advisor Checks

Type Format Example
Structure <value> In this example, constraint
Array <element> NegativeModelParameterConstraint
<paraml>xyz</pa ra:ﬂ%rns when the configuration parameter
<param2>yza</paraiigzings are an invalid structure array:
</element>
<element> <NegativeModelParameterConstraint>
<paraml>xyz</paraml> ~.y31lue>
<param2>yza</param2> <element>
</element> <double>a</double>
</value> <single>b</single>
</element>
<element>
<double>a</double>
<single>b</single>
</element>
</value>

</NegativeModelParameterConstraint>

+ fixvalue - (Optional) Specifies the setting to use when applying the Model Advisor fix action.

You can specify the fixvalue using a format in this table.

Type

Format

Example

Scalar value

<fixvalue>xyz</fixvalue>

In this example, the fix action tag specifies the
new configuration parameter setting as
warning.

<PositiveModelParameterConstraint>
<value>error</value>
<fixaction>warning</fixaction>

</PositiveModelParameterConstraint>

Structure or
object

<fixvalue>
<paraml>xyz</paraml>
<param2>yza</param2>
</fixvalue>

In this example, the fix action tag specifies the
new configuration parameter setting for a
structure.

<PositiveModelParameterConstraint>
<value>
<double>a</double>
<single>b</single>
</value>
<fixvalue>
<double>c</double>
<single>d</single>
</fixvalue>
</PositiveModelParameterConstraint>

6-22

Create Model Advisor Check for Model Configuration Parameters

Type Format Example

Array <fixvalue> In this example, the fix action tag specifies the

<element>value</elemenfigw configuration parameter setting for an
<element>value</e1eme155Tay

</fixvalue>
<NegativeModelParameterConstraint>
<value>
<element>A</element>
<element>B</element>
</value>
<fixvalue>
<element>C</element>
<element>D</element>
</fixvalue>
</NegativeModelParameterConstraint>

Structure <fixvalue> In this example, the fix action tag specifies the
Array <element> new configuration parameter settings for a
<paraml>xyz</para ucture array.
<param2>yza</parap2>
</element> <NegativeModelParameterConstraint>
<element> <value>
<paraml>xyz</paraml> <element>
<param2>yza</param2> <double>a</double>
</element> <single>b</single>
</fixvalue> </element>
<element>
<double>a</double>
<single>b</single>
</element>
</value>
<fixvalue>
<element>
<double>c</double>
<single>d</single>
</element>
<element>
<double>c</double>
<single>d</single>
</element>
</fixvalue>
</NegativeModelParameterConstraint>

* dependson - (Optional) Specifies a prerequisite subcheck.

In this example, dependson specifies that configuration parameter subcheck ID B must pass
before configuration parameter subcheck ID A runs.

<PositiveModelParameterConstraint id="ID A">
<dependson>ID B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying a configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. If the
configuration parameter is set to Fixed-Step, the subcheck passes.

6-23

6 Create Model Advisor Checks

<PositiveModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>

</PostitiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter AlgebraicLoopMsg. If the
configuration parameter is set to none or warning, the subcheck passes. If the subcheck does not
pass, the check fix action modifies the configuration parameter to error.

<PositiveModelParameterConstraint id="ID A">
<parameter>AlgebraicLoopMsg</parameter>
<value>none</value>
<value>warning</value>
<fixvalue>error</value>

</PostitiveModelParameterConstraint>

Data file tagging specifying an array type configuration parameter

<PositiveModelParameterConstraint id="A">
<parameter>ReservedNameArray</parameter>
<value>
<element>A</element>
<element>B</element>
</value>
<value>
<element>A</element>
<element>C</element>
</value>
</PositiveModelParameterConstraint>

Data file tagging specifying a structure type configuration parameter with fix action

<PositiveModelParameterConstraint id="A">
<parameter>ReplacementTypes</parameter>
<value>
<double>a</double>
<single>b</single>
</value>
<value>
<double>c</double>
<single>b</single>
</value>
<fixvalue>
<double>a</double>
<single>b</single>
</fixvalue>
</PositiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action and prerequisite check
The following tagging specifies a subcheck for configuration parameter SolverType. The subcheck
for SolverType runs only after the ID B subcheck passes. If theID B subcheck does not pass, the

subcheck for SolverType does not run. The Model Advisor reports that the prerequisite constraint is
not met.

6-24

Create Model Advisor Check for Model Configuration Parameters

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the SolverType
subcheck passes. If the subcheck runs and does not pass, the check fix action modifies the
configuration parameter to Fixed-Step.

<PositiveModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>
<fixvalue>Fixed-step</value>
<dependson>ID B</value>

</PostitiveModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. The subcheck
does not pass if the configuration parameter is set to Fixed-Step.

<NegativeModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>

</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter SolverType. If the
configuration parameter is set to Fixed-Step, the subcheck does not pass . If the subcheck does not
pass, the check fix action modifies the configuration parameter to Variable-Step.

<NegativeModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>
<fixvalue>Variable-step</value>

</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action and
prerequisite check

The following tagging specifies a check for configuration parameter SolverType. The subcheck for
SolverType runs only after the ID B subcheck passes. If theID B subcheck does not pass, the
subcheck for SolverType does not run. The Model Advisor reports that the prerequisite constraint is
not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the subcheck does not
pass. The check fix action modifies the configuration parameter to Variable-Step.

<NegativeModelParameterConstraint id="ID A">
<parameter>SolverType</parameter>
<value>Fixed-step</value>
<fixvalue>Variable-step</value>
<dependson>ID B</value>

</NegativeModelParameterConstraint>

See Also

Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.DataFile.validate |
Advisor.authoring.generateConfigurationParameterDataFile

6-25

6 Create Model Advisor Checks

More About
. “Organize and Deploy Model Advisor Checks”

6-26

Define Model Advisor Checks for Supported or Unsupported Blocks and Parameters

Define Model Advisor Checks for Supported or Unsupported
Blocks and Parameters

For modeling guidelines that require you to use a subset of block or parameter values, you can create
Model Advisor checks in which you specify these constraints:

* Supported or unsupported block parameter values

* Supported or unsupported model parameter values

* Supported or unsupported blocks

* Check for whether blocks or parameters meet a combination of constraints

You can also create constraints that check for prerequisite constraints before checking the actual

constraint. You can check your model against these constraints as you edit or run the checks
interactively after you complete your model design.

Example

The sldemo_bounce model simulates a ball bouncing on Earth. In this example, you create two
Model Advisor checks consisting of constraints. Then, check your model against those constraints.

Bouncing Ball Model
9.81 »u f % »3
1 Position -
Gravitational)
accele [15] =
ralion > i i L
Valacity
Inital Second-Crder
Valocity Integrator
0.8]
Coafficient of
Restitution

Copyright 2004-2013 The MathWarks, Inc.

Create Block Parameter Constraints

1 Create these block parameter constraints:

cl=Advisor.authoring.PositiveBlockParameterConstraint;
cl.ID="ID 1°';

cl.BlockType='Gain";

cl.ParameterName='Gain';
cl.SupportedParameterValues={'-.7'};
cl.ValueOperator='eq';

6-27

6 Create Model Advisor Checks

6-28

c2=Advisor.authoring.NegativeBlockParameterConstraint;
c2.ID="ID 2';

c2.BlockType='InitialCondition";
c2.ParameterName="'Value';
c2.UnsupportedParameterValues={'0'};
c2.ValueOperator='1le';

Constraint c1 specifies that a Gain block must have a value equal to - .7. Constraint c2 specifies
that the Initial Condition block must have a value less than or equal to zero.

Create this positive model parameter constraint.

c3=Advisor.authoring.PositiveModelParameterConstraint;
c3.ID="ID 3';

c3.ParameterName="'SolverType';
c3.SupportedParameterValues={'Variable-step'};

Constraint c3 specifies that the Solver parameter must be equal to Variable-step.
Create this positive block type constraint:

c4=Advisor.authoring.PositiveBlockTypeConstraint;
c4.ID="ID 5°';
sl=struct('BlockType', 'Constant', 'MaskType',"'");
s2=struct('BlockType', 'Subsystem', 'MaskType',"'");
s3=struct('BlockType', 'InitialCondition', 'MaskType','");
s4=struct('BlockType', 'Gain', 'MaskType',"'");
s5=struct('BlockType', 'Memory', 'MaskType',"'"');
s6=struct('BlockType', 'SecondOrderIntegrator', 'MaskType',"'"');
s7=struct('BlockType', 'Terminator', 'MaskType',"'"');
c4.SupportedBlockTypes={sl;s2;s3;s4;s5;s6;s7;};
c4.addPreRequisiteConstraintID('ID 3');

Constraint c4 specifies the supported blocks. Constraint c3 is a prerequisite to c4 meaning that
the Model Advisor only checks c4 if c3 passes.

Create a data file that contains these constraints. This data file corresponds to one Model Advisor
check.

Advisor.authoring.generateBlockConstraintsDataFile(...
'sldemo constraints 1.xml','constraints',{cl,c2,c3,c4});

The data file contains tagging specifically for constraints.

<?xml version="1.0" encoding="utf-8"7?>
<customcheck>
<checkdata>
<PositiveBlockParameterConstraint BlockType="Gain" id="ID 1">
<parameter type="string">Gain</parameter>
<value>-.7</value>
<operator>eq</operator>
</PositiveBlockParameterConstraint>
<NegativeBlockParameterConstraint BlockType="InitialCondition" id="ID_ 2">
<parameter type="string">Value</parameter>
<value>0</value>
<operator>le</operator>
</NegativeBlockParameterConstraint>
<PositiveModelParameterConstraint id="ID_3">
<parameter type="enum">SolverType</parameter>
<value>Variable-step</value>
</PositiveModelParameterConstraint>
<PositiveBlockTypeConstraint id="ID 5">
<BlockType MaskType="">Constant</BlockType>
<BlockType MaskType="">Subsystem</BlockType>
<BlockType MaskType="">InitialCondition</BlockType>
<BlockType MaskType="">Gain</BlockType>
<BlockType MaskType="">Memory</BlockType>
<BlockType MaskType="">SecondOrderIntegrator</BlockType>

Define Model Advisor Checks for Supported or Unsupported Blocks and Parameters

<BlockType MaskType="">Terminator</BlockType>
<dependson>ID_3</dependson>
</PositiveBlockTypeConstraint>
<CompositeConstraint>
<ID>ID_ 1</ID>
<ID>ID_ 2</ID>
<ID>ID 5</ID>
<operator>and</operator>
</CompositeConstraint>
</checkdata>
</customcheck>

Note For model configuration parameter constraints, use the
Advisor.authoring.generateBlockConstraintsDataFile method only when specifying
model configuration parameter constraints as prerequisites to block constraints or as part of a
composite constraint consisting of block and model configuration parameter constraints. For
other cases, use the Advisor authoring.generateConfigurationParameterDatafile
method.

Create two block parameter constraints and a composite constraint.

ccl=Advisor.authoring.PositiveBlockParameterConstraint;
ccl.ID="ID ccl';

ccl.BlockType='SecondOrderIntegrator';
ccl.ParameterName="'UpperLimitX";
ccl.SupportedParameterValues={'inf'};
ccl.ValueOperator='eq';

cc2=Advisor.authoring.PositiveBlockParameterConstraint;
cc2.ID="ID cc2';

cc2.BlockType='SecondOrderIntegrator';
cc2.ParameterName="'LowerLimitX";
cc2.SupportedParameterValues={'0.0"};
cc2.ValueOperator='eq';

cc=Advisor.authoring.CompositeConstraint;
cc.addConstraintID('ID ccl');
cc.addConstraintID('ID cc2');
cc.CompositeOperator="and"';

Constraint cc1 specifies that for a Second-Order Integrator block, the Upper limit x parameter
must have a value equal to inf. Constraint cc2 specifies that for a Second-Order Integrator
block, the Lower limit x parameter must have a value equal to zero. Constraint cc specifies that
for this check to pass, both ccl and cc2 have to pass.

Create a data file that contains these constraints. This data file corresponds to a second Model
Advisor check.

Advisor.authoring.generateBlockConstraintsDataFile(
‘sldemo _constraints 2.xml', 'constraints',{ccl,cc2,cc});

Create Model Advisor Checks from Constraints

1

To specify and register these checks, use this sl _customization.m file.
function sl customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

6-29

6 Create Model Advisor Checks

% defineModelAdvisorChecks
function defineModelAdvisorChecks

% checkl
rec = Advisor.authoring.createBlockConstraintCheck('mathworks.check 0001");
rec.Title = 'Examplel: Check block parameter constraints';

rec.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback...
(system)), 'None', 'StyleOne');
rec.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Data File';
inputParaml.Value = 'sldemo constraints 1.xml';
inputParaml.Type = 'String’;
inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
rec.setInputParameters({inputParaml});
rec.SupportExclusion = false;
rec.SupportLibrary = true;

% check2
recl = Advisor.authoring.createBlockConstraintCheck('mathworks.check 0002");
recl.Title = 'Example2: Check block parameter constraints';

recl.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback. ..
(system)), 'None', 'StyleOne');
recl.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
recl.setInputParametersLayoutGrid([1 1]);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Data File';
inputParaml.Value = 'sldemo constraints 2.xml';
inputParaml.Type = 'String';
inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
recl.setInputParameters({inputParaml});
recl.SupportExclusion = false;
recl.SupportLibrary = true;

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);
mdladvRoot.register(recl);

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

o

% --- sample factory group 1

rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');

rec.DisplayName='Example: My Group';

rec.addCheck('mathworks.check 0001");

rec.addCheck('mathworks.check 0002");

mdladvRoot.publish(rec);

You must use the Advisor.authoring.createBlockConstraintCheck function to create the
ModelAdvisor.Check object and specify the constraint data file as an input parameter to this

object.

2 At the command prompt, type create the Examplel: Check block parameter constraints and
Example2: Check block parameter constraints checks by typing this command:
Advisor.Manager.refresh customizations
At the command prompt, type sldemo bounce.

In the Modeling tab, select Model Advisor to open the Model Advisor.

In the left pane, select By Task > Example: My Group. For each check, in the right pane, the
Data File parameters are set to the data files that you previously created.

6 Click Run Selected Checks.

6-30

Define Model Advisor Checks for Supported or Unsupported Blocks and Parameters

7 The Examplel: Check block parameter constraints check produces a warning because the
Gain block has a value of -0.8 not -0.7. The Example2: Check block parameter constraints
check passes because the Second-Order Integrator block meets both constraints.

You can use edit-time checking for custom checks that define block and parameter constraints. To
enable edit-time checking, in the Model Advisor Configuration Editor, select the checks that contain

the constraints. For more information on edit-time checking, see “Check Your Model by Using Edit
Time Checks” on page 3-6.

See Also

Advisor.authoring.generateBlockConstraintsDataFile |
NegativeBlockParameterConstraint | NegativeBlockTypeConstraint |
NegativeModelParameterConstraint | PositiveBlockParameterConstraint |
PositiveBlockTypeConstraint | PositiveModelParameterConstraint

6-31

6 Create Model Advisor Checks

Define Startup and Post-Execution Actions Using Process
Callback Functions

The process callback function is an optional function that you use to configure the Model Advisor and
process check results at run time. The process callback function specifies actions that the software
performs at different stages of Model Advisor execution:

» configure stage: The Model Advisor executes configure actions at startup, after checks and
tasks have been initialized. At this stage, you can customize how the Model Advisor constructs
lists of checks and tasks by modifying Visible, Enable, and Value properties. For example, you
can remove, rename, and selectively display checks and tasks in the By Task folder.

* process results stage: The Model Advisor executes process results actions after checks
complete execution. You can specify actions to examine and report on the results returned by
check callback functions.

Process Callback Function Arguments

The process callback function uses the following arguments.

Argument 1/0 Type Data Type Description

stage Input Enumeration Specifies the stages at which
process callback actions are
executed. Use this argument in a
switch statement to specify actions
for the stages configure and
process results.

system Input Path Model or subsystem that the Model
Advisor analyzes.

checkCellArray Input/Output Cell array As input, the array of checks
constructed in the check definition
function.

As output, the array of checks
modified by actions in the configure
stage.

taskCellArray Input/Output Cell array As input, the array of tasks
constructed in the task definition
function.

As output, the array of tasks
modified by actions in the configure
stage.

Process Callback Function
This example shows a process callback function that specifies actions in the configure stage that

makes only custom checks visible. In the process results stage, this function displays information
at the command prompt for checks that do not pass.

6-32

Define Startup and Post-Execution Actions Using Process Callback Functions

Process Callback Function
Defines actions to execute at startup and post-execution
function [checkCellArray taskCellArray] = ...
ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)
switch stage
% Specify the appearance of the Model Advisor window at startup
case 'configure'
for i=1:length(checkCellArray)
% Hide all checks that do not belong to custom folder
if isempty(strfind(checkCellArray{i}.ID, 'mathworks.example'))
checkCellArray{i}.Visible = false;
checkCellArray{i}.Value = false;

%
%

end
end
% Specify actions to perform after the Model Advisor completes execution
case 'process results'
for i=1:length(checkCellArray)
% Print message if check does not pass
if checkCellArray{i}.Selected && (strcmp(checkCellArray{i}.Title,
'Check Simulink window screen color'))
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% Verify whether the check was run and if it failed
if mdladvObj.verifyCheckRan(checkCellArray{i}.ID)
if ~mdladvObj.getCheckResultStatus(checkCellArray{i}.ID)
% Display text in MATLAB Command Window
disp(['Example message from Model Advisor Process'...
' callback.']);
end
end
end
end
end

Tips for Using the Process Callback Function in a sl_customization File

Observe the following tips when using process callback functionina sl customization file:

» Ifyou delete a check in the Model Advisor Configuration Editor, you can retrieve a copy of it from
the Library tab in the Model Advisor Configuration Editor. However, if you use a process callback
function in a s1_customization file to hide checks and folders, the Model Advisor Configuration
Editor does not display the hidden checks and folders. For a complete list of checks and folders,
remove process callback functions and update the Simulink environment.

* The Model Advisor registers only one process callback function. If you have more than one
sl customization.m file on your MATLAB path, the Model Advisor registers the process
callback function from the sl _customization.m file that has the highest priority.

* Ifyou add process callbacks within the sl customization.m file, include methods for
registering the process callbacks in the sl customization function.

See Also

“Defining Custom Model Advisor Checks Workflow” on page 6-34 | “Programmatically Customize
Tasks and Folders for the Model Advisor” on page 7-15 | “Use the Model Advisor Configuration
Editor to Customize the Model Advisor” on page 7-3

6-33

6 Create Model Advisor Checks

Defining Custom Model Advisor Checks Workflow

To specify your own set of conditions and model configuration settings for the Model Advisor to
review, create custom checks. This graphic provides an overview of the workflow for creating and
defining custom checks. The sections below provide details on each workflow step.

1. Create an s|_customization file.

!

2. Create an sl_customization{cm)

function.

3. Register the custom check.

4.1 To define check actions, start with the
ModelAdvisor.Check class.
4. Create a separate m file with the
check dafinition function. Call this 4.2 To define check input parameters, use the
function from the - ModelAdvisor.InputParameter class.
sl_customization (cm) function.
4.3 To specify a fix, start with the
l ModelAdvisor.Action class.
4.4 To publish the custom check, use the
5. For each custom check, repeat ModelAdvisor.Root.publish
steps 3 and 4. method.

Create the sl _customization File and Function

To define a custom check, begin by creating an sl _customization.m file on the MATLAB path. In
the sl customization.mfile, create an sl customization function. The sl customization
function accepts one argument, a customization manager object:

function sl _customization(cm)

Tip

* You can have more than one sl customization.m file on your MATLAB path.

6-34

Defining Custom Model Advisor Checks Workflow

* Do not place an s1_customization.m file that customizes Model Advisor checks and folders in
your root MATLAB folder or its subfolders, except for the matlabroot/work folder. Otherwise,
the Model Advisor ignores the customizations that the file specifies.

Register Custom Checks

To register custom checks, use the addModelAdvisorCheckFcn method, which is part of the
customization manager object that you input to the sl customization function. Add this code to
your sl_customization.m file:

function sl customization(cm)
% register custom checks
cm.addModelAdvisorCheckFcn(@checkDefinitionFcn)

The addModelAdvisorCheckFcn method registers the check that you define in the
checkDefinitionFcn to the By Product folder of the Model Advisor. The checkDefinitionFcn
argument is a handle to the function that defines the custom check that you want to add to the Model
Advisor as an instance of the ModelAdvisor.Check class.

Create a Check Definition Function

The check definition function defines the actions that the Model Advisor takes when you run the
check. For each check that you create, you should define a check definition function. The following
sections describe the key components of the check definition function.

Create an Instance of the ModelAdvisor.Check Class

For each custom check, create one instance of the ModelAdvisor.Check class. Use the
ModelAdvisor.Check properties and methods to define the check user interface and actions. This
table describes some key check components.

Contents Description

Check ID (required) Uniquely identifies the check. The Model Advisor uses this ID to
access the check.

Handle to the check callback Function that specifies the contents of a check.

function (required)

Check name (recommended) Creates a name for the check that the Model Advisor displays.

Model compiling (optional) Specifies whether the model is compiled for check analysis.

Input Parameters (optional) Adds input parameters that request input from the user. The
Model Advisor uses the input to perform the check.

Action (optional) Adds a fixing action.

Define Check Actions and a Fix

The check definition function contains a check callback function that specifies the actions that you
want the Model Advisor to perform on a model or subsystem. Define the check callback function and
pass a handle to it to the setCallbackFcn method. The Model Advisor executes the callback
function when you run the check. Callback functions provide one or more return arguments that
display the results after executing the check.

6-35

6 Create Model Advisor Checks

If you are specifying a custom check fix, the check definition function should also contain an action
callback function. In the check definition function, create an instance of the ModelAdvisor.Action
class. Define the action callback function and pass a handle to it to the setCallbackFcn method.
When you define an action, the Model Advisor includes an Action box below the Analysis box. The

Action box contains a button for fixing the model or subsystem. In the example below, the button
name is Modify Settings.

—Action

Modify model configuration optimization settings that can impact safety

Maodify Settings |

Result:

Callback and action callback functions provide one or more return arguments for displaying the
results after executing the check. See “Create the Check Callback Definition Function” on page 6-11
and “Create the Action Callback Definition Function” on page 6-12.

Define Check Input Parameters

With input parameters, you can request input before running the check. Define input parameters
using the ModelAdvisor.InputParameter class. You must include input parameter definitions
inside a custom check definition function. You must define one instance of this class for each input
parameter that you want to add to a Model Advisor check.

Specify the layout of input parameters with the following methods.

Method Description
setInputParametersLayoutGrid Specifies the size of the input parameter grid.
setRowSpan Specifies the number of rows the parameter
occupies in the input parameter layout grid.
setColSpan Specifies the number of columns the parameter
occupies in the input parameter layout grid.

The Model Advisor displays input parameters in the Input Parameters box.

6-36

Defining Custom Model Advisor Checks Workflow

Example task with input parameter and auto-fix ability

4 Madel Advisor

. [@ [By Product Analysis -
>] I By Task Example style three callbadk
4 || 21 My Group Input Parameters £

V| [| Example task with inp Skip font checks.

V| [| Example task 2

V| [| Example task 3 Standard font size 12 Valid font Arial
J u-_?.! My Procedure

Run This Chedk
Result: || MotRun Explore

Click Run This Check.

4 L 2

Help Apply

Define Where Custom Checks Appear

Create a folder for custom checks in the By Product folder by using the publish method. Then use
the Model Advisor Configuration Editor to customize the folders within the Model Advisor tree. For
more information, see “Use the Model Advisor Configuration Editor to Customize the Model Advisor”
on page 7-3.

You can customize the Model Advisor by using the ModelAdvisor.Group and
ModelAdvisor.FactoryGroup classes instead of the Model Advisor Configuration Editor. However,
these APIs are a less flexible and more time-consuming way of customizing the Model Advisor. To
place customized checks in custom folders at the top-level of the Model Advisor tree (the Model
Advisor root), use the ModelAdvisor.Group class. To place customized checks in new folders in the
By Task folder, use the ModelAdvisor.FactoryGroup class. You must include methods that
register these tasks and folders in the s1 customization function.

Format Check Results

To use default formatting for Model Advisor results, specify the callback function type as
DetailStyle in the setCallbackFcn method. If the default formatting does not meet your needs,
use one of the other callback function styles and either the ModelAdvisor.FormatTemplate class
or these other Model Advisor formatting APIs:

Class Description

ModelAdvisor.Text Create a Model Advisor text output.
ModelAdvisor.List Create a list.

ModelAdvisor.Table Create a table.

ModelAdvisor.Paragraph Create and format a paragraph.
ModelAdvisor.LineBreak Insert a line break.

ModelAdvisor.Image Include an image in the Model Advisor output.

6-37

6 Create Model Advisor Checks

6-38

Display and Enable Checks

You can specify how a custom check appears in the Model Advisor. You can define when to display a
check, or whether a user can select or clear a check using the Visible, Enable, and Value
properties of the ModelAdvisor.Check class.

The following chart illustrates how the Visible, Enable, and Value properties interact.

Do not lgnore
false display - nable
check 7| andValue
or task properties
Display
Display check box
Enabled? check —— atl current
or task Value, but
grayed out

Display

check

or task
with active
check box

If you add checks to the Model Advisor as tasks, specify these properties in the ModelAdvisor.Task
class. If you specify the properties in both the ModelAdvisor.Check and ModelAdvisor.Task
classes, the ModelAdvisor.Task properties take precedence, except for the Visible and
LicenseName properties.

See Also

ModelAdvisor.Action | ModelAdvisor.Check | ModelAdvisor.FactoryGroup |
ModelAdvisor.Group | ModelAdvisor.InputParameter | publish

Related Examples
. “Create and Deploy a Model Advisor Custom Configuration” on page 7-25
. “Define the Compile Option for Custom Model Advisor Checks” on page 6-39

Define the Compile Option for Custom Model Advisor Checks

Define the Compile Option for Custom Model Advisor Checks

Depending on the implementation of your model and what you want your custom check to achieve, it
is important that you specify the appropriate compile option so the intended information is evaluated
by your custom check.

You use the ModelAdvisor.Check.CallbackContext property to define the compile option:
* None specifies that the Model Advisor does not have to compile your model before analysis by
your custom check.

* PostCompile specifies that the Model Advisor must compile the model to update the model
diagram and then simulate the model to execute your custom check.

* PostCompileForCodegen specifies that the Model Advisor must compile and update the model
diagram specifically for code generation, but does not simulate the model. Use this option for
Model Advisor checks that analyze code generation readiness of the model.

Checks for Models That Are Not Compiled by the Model Advisor

For custom checks that do not require the Model Advisor to compile the model before execution of
the check, in the check definition you specify the ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'None';

Note By default, the Model Advisor does not compile the model for custom checks. You do not have
to include the ModelAdvisor.Check.CallbackContext property in the check definition.

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck2");

rec.Title = 'Non-compile check example';

rec.TitleID = 'custom.dtcCheck.NonCompilel';

rec.TitleTips = 'A custom check for a model that does not need to be compiled ';
rec.setCallbackFcn(@CheckNoCompile, 'None', 'StyleOne');

rec.CallbackContext = 'None'; % Not compiled

mdladvRoot.publish(rec, 'Demo');

Checks That Require the Model to be Compiled and Simulated by the
Model Advisor

For custom checks that require model compilation and simulation to properly check the
implementation of the model, in the check definition you specify the
ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'PostCompile’;

6-39

6 Create Model Advisor Checks

6-40

In this situation, the Model Advisor updates the model diagram and simulates the model. The Model
Advisor does not flag modeling issues that fail during code generation because these issues do not
affect the simulated model.

This example shows a check definition that requires a model to be compiled and simulated.

function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck3");

rec.Title = 'PostCompile check example';

rec.TitleID = 'custom.dtcCheck.Compilel’;

rec.TitleTips = 'A custom check for a model that is compiled and simulated';
rec.setCallbackFcn(@CheckCompileSimulate, 'None', 'StyleOne');
rec.CallbackContext = 'PostCompile'; % Compiled and simulated

mdladvRoot.publish(rec, 'Demo');

Checks That Evaluate Code Generation Readiness of the Model

For custom checks that evaluate code generation readiness, you must develop the model to generate
code. In the check definition you specify the ModelAdvisor.Check.CallbackContext property as:

rec.CallbackContext = 'PostCompileForCodegen';

In this situation, the Model Advisor compiles the model and updates the model diagram specifically
for code generation. The Model Advisor does not assume that the model is being simulated.

You can create custom Model Advisor checks that identify code generation setup issues in a model at
an earlier stage, avoiding unexpected errors during code generation. For example, in this model, the
Red enumeration in BasicColors and OtherColors are OK for use in a simulated model. In the
generated code, however, these Red enumerations result in an enumeration clash. By using the
'PostCompileForCodegen' option, your custom Model Advisor check can identify this type of code
generation setup issue.

Define the Compile Option for Custom Model Advisor Checks

end
metho
fun

end
end
end

classdef BasicColors < Simulink.IntEnumType

enumer
|Red (0)
e

Green (2)

ds (Static = true)
ction retval =
retVal = false:

BasicColors | double
@D N PP

ouble

classde
enume

end
metho
fun

end
end
end

f otherColors < Simulink.IntEnumType

r
(=X
eLLlow (1)

Magenta (2)

OtherColors dauble
1 oun
double

ds (Static = true)

ction retval =|addClassNameToEnumiames ()

retval = false;

The 'PostCompileForCodegen' option compiles the model for all variant choices. This compilation
enables you to analyze possible issues present in the generated code for active and inactive variant
paths in the model. An example is provided in “Create Custom Check to Evaluate Active and Inactive
Variant Paths from a Model” on page 6-42.

This example shows a check definition that requires a model to be compiled for code generation

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

ample Check: Check whose model is compiled for generated code.
odel is not simulated.

=0

rec = ModelAdvisor.Check('exampleCheckl"');

rec.Title = 'PostCompileForCodegen check example';

rec.TitleID = 'custom.dtcCheck.CompileForCodegenl';

rec.TitleTips = 'A custom check for evaluating the generated code';
rec.setCallbackFcn(@CheckSingleToBoolConversion, 'None', 'StyleOne');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for generated code

mdladvRoot.publish(rec, 'Demo');

6-41

6 Create Model Advisor Checks

6-42

Create Custom Check to Evaluate Active and Inactive Variant Paths
from a Model

This example shows the creation of a custom Model Advisor check that evaluates active and inactive
variant paths from a variant system model. The example provides Model Advisor results that
demonstrate why you use PostCompileForCodegen versus PostCompile as the value for the
ModelAdvisor.Check.CallbackContext property when generating code from the model is your
final objective. See “Define the Compile Option for Custom Model Advisor Checks” on page 6-39.

Update Model to Analyze All Variant Choices

For the Model Advisor to evaluate active and inactive paths in a variant system, you must enable the
Analyze all choices during update diagram and generate preprocessor conditionals option for
the variant blocks (Variant Sink, Variant Source, and Variant Subsystem, Variant Model).

Note: Selecting this option can affect the execution time, thereby increasing the time it takes for the
Model Advisor to evaluate the model.
1 Open the example model ex check compile code gen.

2 For each Variant Source block, open the block parameters and select the Analyze all choices
during update diagram and generate preprocessor conditionals option.

3 Save the model to your local working folder.

single
convert >0
Data Type Conversion
boolean
single
convert >0
Data Typa Conversion 1 %
single
convert e
Data Type Conversion2
boolean
single
convert e
Data Type Conversion3 %

Update s1_customization.m File

In your working folder, update the s1 customization.m file. Save your changes. If you are asked if
it is ok to overwrite the file, click OK.

function sl customization(cm)

Define the Compile Option for Custom Model Advisor Checks

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

end

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheckl');

rec.Title = 'Check to identify SINGLE to BOOL conversions';

rec.TitleID = 'custom.dtcCheck.CompileForCodegenl"';

rec.TitleTips = 'Custom check to identify SINGLE to BOOL conversions';
rec.setCallbackFcn(@CheckSingleToBoolConversion, 'None', 'StyleOne');
rec.CallbackContext = 'PostCompileForCodegen'; % Compile for Code Generation

mdladvRoot.publish(rec, 'Demo');
end

% --- creates SimpleCallback function
function result = CheckSingleToBoolConversion(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result={};
dtcBlks = find system(system, 'BlockType', 'DataTypeConversion');
for ii = numel(dtcBlks):-1:1
dtcBlk = dtcBlks{ii};
compDataTypes = get param(dtcBlk, 'CompiledPortDataTypes');
if isempty(compDataTypes)
dtcBlks(ii) = [1;
continue;
end
if ~(strcmp(compDataTypes.Inport, 'single') && strcmp(compDataTypes.Outport, 'boolean'))
dtcBlks(ii) = [1;
continue;
end
end

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for data type conversion blocks that'...
' convert single data to boolean data']);
if ~isempty(dtcBlks)
ft.setSubResultStatusText(['Check has failed. The following '...
'data type conversion blocks convert single data to boolean:']);
ft.setlListObj (dtcBlks);
ft.setSubResultStatus('warn');
ft.setRecAction('Modify the model to avoid converting data type from single to boolean');
mdladvObj.setCheckResultStatus(false);
else
ft.setSubResultStatusText(['Check has passed. No data type conversion blocks '...
"that convert single data to boolean were found.']l);
ft.setSubResultStatus('pass');
mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

6-43

6 Create Model Advisor Checks

6-44

end

function result = dummy(~)
result={};
end

Open Model Advisor and Execute Custom Check

Prior to opening the Model Advisor and running the custom check, you must refresh the Model
Advisor check information cache. In the MATLAB Command Window, enter:

Advisor.Manager.refresh customizations
To open the Model Advisor and execute the custom check:

1 Open your saved model.

2 Inthe Modeling tab, select Model Advisor. A System Selector — Model Advisor dialog box
opens. Click OK. The Model Advisor opens.

3 In the left pane, select By Product > Demo > Check to identify SINGLE to BOOL
conversion. If the By Product folder is not displayed in the Model Advisor window, select
Settings > Preferences > Show By Product Folder.

4 Right-click the check and select Run This Check. The Model Advisor compiles the model and
executes the check. The Model Advisor updates the model diagram, with the inactive variant
paths appearing as dimmed.

boobean

single
convert

Data Type Conversion

boobean

single
(2)——# convert

Data Type Conversion2

Review the Model Advisor Results

Review the check analysis results in the Model Advisor. Click the hyperlink path to open the violating
block in the model editor.

In this example, because you defined the compile option in the sl _customization.m file as

Define the Compile Option for Custom Model Advisor Checks

rec.CallbackContext = 'PostCompileForCodegen’;

the Model Advisor generates warnings for the Data Type Conversion blocks in the active paths and
the inactive paths of the Variant system.

Check to identify SINGLE to BOOL conversions
Analysis (- Triggers Update Diagram)
Custom chedk to identify SINGLE to BOOL conversions

Run This Check

Result: /T, Warning

This check looks for data type conversion blocks that convert single data to boolean data

Check has failed. The following data type conversion blocks convert single data to boolean:

ex_check compile code pen/Data Tvpe Conversion
ex_check compile code gen/Data Tvpe Conversion|
ex_check compile code pen/Data Tvpe Conversion2
ex_check compile code gen/Data Tvpe Conversion3

L I

Recommended Action
Meodify the model to avoid converting data type from single to boolean

If you defined the compile option in the s1 customization.m file as

rec.CallbackContext = 'PostCompile’;

the results include only the Data Type Conversion blocks in the active path.

6-45

6 Create Model Advisor Checks

Check to identify SINGLE to BOOL conversions
Analysis (" Triggers Update Diagram)
Custom check to identify SINGLE to BOOL conversions

Run This Chedk

Result: ,& Warning

This check looks for data type conversion blocks that convert single data to boolean data

Check has failed. The following data type conversion blocks convert single data to boolean:

gx_check compile code gen/Data Tvpe Conversion
¢ ox_check compile code gen/Data Tvpe Conversion?

Recommended Action
Modify the model to avoid converting data type from single to boolean

See Also
ModelAdvisor.Check | ModelAdvisor.Check.CallbackContext

More About

. “Defining Custom Model Advisor Checks Workflow” on page 6-34
. “Variant Systems” (Simulink)

6-46

Exclude Blocks From Custom Checks

Exclude Blocks From Custom Checks

This example shows how to exclude blocks from custom checks. To save time during model
development and verification, you can exclude individual blocks from custom checks during a Model
Advisor analysis. To exclude custom checks from Simulink blocks and Stateflow charts, use the
ModelAdvisor.Check.supportExclusion and
Simulink.ModelAdvisor.filterResultWithExclusion functions in the check definition file.

Update the Check Definition File

5

Set your folder to a writeable directory.

Copy the script prepare _cust chk code to your current folder and run the script. The script
copies the files necessary for this example to your current folder.

copyfile(fullfile(matlabroot, 'examples’', 'slcheck', 'main', 'prepare cust chk code.m'),...

'prepare cust chk code.m','f');
run('prepare_cust chk code.m');

Open the defineDetailStyleCheck file.

To update the Check position of block names check to exclude blocks during Model Advisor
analysis, make two modifications to the defineDetailStyleCheck file.

a Enable the Check position of block names check to support check exclusions by using the
ModelAdvisor.Check.supportExclusion property. After
rec.setCallbackFcn(@etailStyleCallback, 'None', 'DetailStyle');, add
rec.supportExclusion = true;. The first section of the function
defineDetailStyleCheck now looks like:

% Create ModelAdvisor.Check object and set properties.

rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';
rec.setCallbackFcn(@DetailStyleCallback, 'None', 'DetailStyle');
rec.supportExclusion = true;

b Use the Simulink.ModelAdvisor.filterResultWithExclusion function to filter
model objects causing a check warning or failure with checks that have exclusions enabled.
To do this, modify the DetailStyleCallback(system, CheckObj) function as follows:

% Find all blocks whose name does not appear below blocks
violationBlks = find system(system, 'Type', 'block',...
"NamePlacement', 'alternate’, ...
'ShowName', 'on');
violationBlks = mdladvObj.filterResultWithExclusion(violationBlks);

Save the DefineDetailStyleCheck file. If you are asked if it is OK to overwrite the file, click
OK.

Create and Save Exclusions

1

In order for your customizations to be visible in the Model Advisor, you must refresh the Model
Advisor check information cache. At the MATLAB command prompt, type this command:

Advisor.Manager.refresh customizations();
To open the model, double-click AdvisorCustomizationExample.slx.
In the Modeling tab, select Model Advisor to open the Model Advisor.

6-47

6 Create Model Advisor Checks

6-48

9

Note If the By Product folder is not displayed in the Model Advisor window, select Show By
Product Folder from the Settings > Preferences dialog box.

In the left pane of the Model Advisor window, select the By Product > Demo > Check whether
block names appear below blocks check. In the right pane, select Run This Check. The
check fails.

In the Model Advisor window, check that HighlightingHighlight Check Results is selected.
The blocks causing the Check whether block names appear below blocks check failure are
highlighted in yellow.

In the model window, right-click the X block and select Model Advisor > Exclude block only >
Check position of block names.

In the Model Advisor Exclusion Editor, click OK to create an exclusion file.

In the model window, open the Amplifier subsystem and right-click the GainBlock block and
select Model Advisor > Exclude block only > Check position of block names.

In the Model Advisor Exclusion Editor, click OK to update the exclusion file.

Review Exclusions

1 In the Model Advisor, click Settings > Preferences > Show Exclusion Tab. Review the
exclusions in the Exclusions tab.

2 In the left pane of the Model Advisor window, select the By Product > Demo > Check position
of block names check. In the right pane, select Run This Check. The check now passes. In the
right-pane of the Model Advisor window, you can see the Check Exclusion Rules that the Model
Advisor applies during the analysis.

3 Close the model and the Model Advisor.

See Also

Simulink.ModelAdvisor | supportExclusion

Related Examples

Example of Excluding Gain and Outport Blocks From Checks on page 3-15
Excluding Blocks From Model Advisor Checks on page 3-10

More About

“Run Model Advisor Checks and Review Results” on page 3-4
“Address Model Check Results with Highlighting” (Simulink)

Model Advisor Customization

7 Model Advisor Customization

Customize the Configuration of the Model Advisor Overview

7-2

You can use Model Advisor API and the Model Advisor Configuration Editor to customize the
configuration of the Model Advisor, including:

Define which built-in (shipped) and custom Model Advisor checks are available in the Model
Advisor and their order of execution

Create custom folders and organize checks
Designate the default configuration file for the Model Advisor
Suppress the warning about missing checks when loading the Model Advisor configuration

To customize the Model Advisor to include custom checks and a custom configuration, perform the
following tasks:

(Optional) Author custom checks in a customization file. See “Create Model Advisor Checks”.

Use the Model Advisor Configuration Editor to specify the folders and checks that you want to
include in your custom Model Advisor configuration. See “Use the Model Advisor Configuration
Editor to Customize the Model Advisor” on page 7-3.

Update your Simulink environment so that the Model Advisor uses your configuration files. See
“Update the Environment to Include Your Custom Configuration” on page 7-22

Open the Model Advisor, Load the configuration and verify that the appropriate configuration is
being used and checks are available. See described in “Load and Verify a Custom Configuration”
on page 7-23. . on page 7-23

(Optional) Deploy the custom configurations to your users. See “Deploy Custom Configurations”
on page 7-24.

Verify that models comply with modeling guidelines. See “Run Model Advisor Checks and Review
Results” on page 3-4.

Use the Model Advisor Configuration Editor to Customize the Model Advisor

Use the Model Advisor Configuration Editor to Customize the
Model Advisor

Overview of the Model Advisor Configuration Editor

The Model Advisor Configuration Editor provides a way for you to specify the checks that you want to
use for edit-time checking, as well as the checks included in the Model Advisor. This organizational
hierarchy is saved as a configuration file, which is loaded when you initiate the Model Advisor. You
can use the Model Advisor Configuration Editor to modify existing configurations, create new Model
Advisor configurations, and specify the default configuration.

The Model Advisor Configuration Editor gives you the flexibility to customize the Model Advisor
analysis to meet the needs of your organization by allowing you to:

* Review all available Model Advisor checks.

* Add, remove, and organize built-in checks and folders in the Model Advisor tree.

» Integrate custom Model Advisor checks in your verification and validation workflow.

» Disable and enable checks and folders.

* Rename checks and folders.

» Specify whether a check is marked as a warning or failure when it is flagged during a Model
Advisor analysis.

» Suppress the warning about missing checks when loading the Model Advisor configuration.
The Model Advisor Configuration Editor includes:

* The Library pane — A read-only pane that lists all checks and folders that are available for use in
the configuration, delineated by the By Product and By Task tabs. To permanently display the
Library tab, click Show Library on the toolstrip.

* The Model Advisor pane — This pane lists the checks and folders in the current Model Advisor
configuration, filtered by:
* All checks — Lists all Model Advisor checks included in the current configuration

* Edit Time supported checks — Lists only the Model Advisor checks that are supported as
edit-time checks

* Information tab — This tab provides details about the check and folder, such as display name,
check title and ID, description, license requirements, subchecks, and input parameters.

Use the search functionality in the Library and Model Advisor panes to locate specific checks and
folders.

7 Model Advisor Customization

MODEL ADVISOR CONFIGURATION EDITOR

(& Model Advisor Configuration Editor - *CAMATLAB\MACE\Configurations\default_cenfiguration.json

= [By Product
v [5) Embedded Coder
¥ I3 Simulink
¥ I Simulink Coder
¥+ [Simulink Code Inspector
» [AUTOSAR Blockset
» 3 DO Qualification Kit
» 25 Simulink Check
v 3 IEC Certification Kit
¥ I3 HOL Coder
» 3 Simscape
» =3 Simulink Requirements
¥ (= Simulink Design Verifier
» (=3 Simulink Control Design

EI‘]:l I‘j E & Set As Default ﬁ New Folder .{ Cut
Mew Op=n Save Save As £ Restore Default m‘ Show Library Redo ﬁ. Delete
FILE NEW
LIBRARY Model Advisor
= By Product By Task

‘ Search

L_{| ‘AH checks |

~ (W] [Model Advisor Configuration Editor
~ [m] [By Product
~ (] 5 Embedded Coder

[E] Identify lookup table blocks the

[[E] Check configuration paramete
[7] [£] Check for blocks not recomme
[7] [E] Check output types of logic blc
[T] [E] Check the hardware implemer
[[] [F Identify questionable software
[7] [F Identify questionable code inst
[C] (& Identify blocks generating inefl
[[E] Check configuration paramete
[7] [£] Check for blocks not recomme
[7] [E] Check for unsupported block r
[T & Check usage of Assignment b
[[] [E] Check for switch case express
[7] [E] Check for missing error ports i
[7] [E] Check configuration paramete
[] [E] Check for blocks not recomme
O I@ Identify questionable subsyste
O @ Check for blocks not supporte:
O @ Identify TLC S-Functions with
O Ii Identify blocks that generate
[l Ii Check for missing const qualif

b

i Copy viove Up
Paste & Move Down

]

EDIT

Information

Identify lookup table blocks that generate expensive out-of-range checking code

Display Name:

Identify lookup table blocks that generate expensive ouf-of-range checking code

Check Title: Identify lookup table blocks that generate expensive out-of-range

checking code

Check ID: mathworks.codegen. LUTRangeCheckCode

Description: ~ These settings can lead to inefficient code generation when inputs
ahways fall within the range of valid breakpoint values for lookup table blocks, including
Lookup Table blocks, Prelookup blocks and Interpolation blocks.

Product Association Simulink; Embedded Coder

Check result when issues are flagged: | Wamning i

[Hep |

Model Advisor Configuration Editor

Open the Model Advisor Configuration Editor

Before opening the Model Advisor Configuration Editor, verify that the current folder is writable. If
the folder is not writable, you see an error message when you start the Model Advisor Configuration

Editor.

When implementing custom checks or Model Advisor customizations by using the Model Advisor AP],
you must first update the Simulink environment to include your s1_customization.m file. At the
MATLAB command line, enter

Advisor.Manager.refresh customizations

Use one of these methods to open the Model Advisor Configuration Editor:

* Programmatically — At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.

e From the Simulink editor — In the Modeling tab, select Model Advisor > Model Advisor

Configuration Editor .

* From the Model Advisor — Select Settings > Open Configuration Editor.

Use the Model Advisor Configuration Editor to Customize the Model Advisor

The configuration file that is currently being used by the Model Advisor displays when you open the
Model Advisor Configuration Editor. The file name for the configuration is displayed at the top of the
window. Verify that you are evaluating the correct configuration file. To open a different configuration
file, click Open and browse to the file you would like to review.

To create a new configuration, click the New button on the toolstrip. Use Save As to rename the
configuration file. Model Advisor configuration files are saved in .json format.

Specify a Default Configuration File

You can use the Model Advisor Configuration Editor to specify a default configuration that loads
automatically when the Model Advisor opens. To set the default configuration, open the configuration
file in the Model Advisor Configuration Editor and click the Set As Default button on the toolstrip.

Note If you have previously designated a default configuration, you can use Clear default
configuration setting to clear the setting that designates the current default configuration file.
Clicking the button does not modify the configuration that is currently displayed in the Model Advisor
Configuration Editor. When you do not specify a default configuration, the Model Advisor uses the
standard configuration that is defined by your system administrator.

If you do not specify the configuration file as the default, when you save the file, you are prompted as
to whether to make the file the default configuration. To make this file the default configuration, click
Yes.

Customize the Model Advisor Configuration

You can use the Model Advisor Configuration Editor to customize the Model Advisor configuration
tree, including adding and removing checks and folders and specifying the order in which checks are
executed. You can also disable the ability for users to select whether to include or exclude a check
from an analysis. You can also use the Model Advisor Configuration Editor to define the input
parameters for a check.

Note Checks that are copied from the Library tab retain their default parameter settings. When they
are pasted into your custom configuration folder, the box beside each check is not selected.

Checks that are copied or cut from a folder in the Model Advisor tab retain their user-define
parameter settings. When a check is included in multiple folders, you can specify different
parameters for each check individually.

Organize the Hierarchy

You can customize the layout of the checks and folders in the Model Advisor configuration tree by
using:

* New Folder to create a folder.

* Copy, Cut, and Paste to add, copy, and move checks and folders.

* Delete to remove checks and folders.

* Move Up or Move Down to shift the position of the check or folder in the configuration tree. The
folders and checks that are higher in the configuration tree are executed first in the analysis.

7-3

7 Model Advisor Customization

Enable or Disable Checks

You can use the Model Advisor Configuration Editor to disable the check box control for checks and
folders in the Model Advisor. By doing so, the check is still listed in the Model Advisor configuration
tree, but it is dimmed and you do not have the ability to add or remove the check from the analysis.

In the Model Advisor pane, right-click on a folder or check and select Disable. Depending on the
check box selection in the Model Advisor Configuration Editor, the following results occur in the
Model Advisor:

» If the box beside check is selected in the Model Advisor Configuration Editor, then in the Model
Advisor, the check is automatically selected. Because you selected Disable, the check is dimmed
and you cannot choose to remove the check from the analysis.

If the box beside the check is not selected and the Disable option is applied in the Model Advisor
Configuration Editor, then in the Model Advisor, the check is not selected and you cannot included
it in the analysis.

» If the box beside folder is selected in the Model Advisor Configuration Editor, then in the Model
Advisor, the checks within the folder are automatically selected. Because you selected Disable,
the folder and its checks are dimmed and you cannot choose to remove the checks from the
analysis.

If the box beside the folder is not selected and the Disable option is applied in the Model Advisor
Configuration Editor, then in the Model Advisor, none of the checks within the folder are selected
and you cannot include it in the analysis.

When a check or folder is disabled, you can use the Enable option to allow users to determine
whether to include the check(s) in an analysis.

Note Enable and Disable affects the execution of checks in the analysis for both the Model Advisor
user interface and edit-time checking.

Specify Parameters for Check Customization

You can use the Model Advisor Configuration Editor to customize a Model Advisor check, such as the
display name and input parameters for the check.

In the Information tab, review the content that you can customize for the check:

* Display Name — Provide a new name for the check, which is displayed in the Model Advisor.
Note that changing the display name does not change the check title.

* Check result when issues are flagged — Specify whether you want the check to be marked as a
warning or failure in the results when the check flags an issue in your model. The default value is
Warning. Select Fail to mark a flagged check as failed in the results.

* Input Parameters — Specify additional characteristics and functionality for the check. The
Model Advisor uses these parameters to further define the emphasis of the analysis. For example,
you can choose to include only subcheck jc_0736_b and specify the acceptable number of single-
byte spaces in the analysis for Model Advisor check “Check indentation of code in Stateflow
states”.

Use the Model Advisor Configuration Editor to Customize the Model Advisor

Suppress Warning Message for Missing Checks

The Model Advisor automatically warns you of checks that are missing when loading a Model Advisor
configuration. You can use the Model Advisor Configuration Editor to suppress this message. Select
the Model Advisor Configuration Editor root node and, in the Information tab, select Suppress
warning message for missing checks when loading configuration.

Alternatively, you can programmatically suppress the Model Advisor warning by entering this
command at the MATLAB command line:

warning('off', 'Simulink:tools:MALoadConfigMissCorrespondCheck"')

Use the Model Advisor Configuration Editor to Create a Custom Model
Advisor Configuration

You can use the Model Advisor Configuration Editor to organize the hierarchy of the Model Advisor
and specify checks that are included in check analyses. This example shows how to create a new
configuration file, specify checks for the Model Advisor and edit-time checking, define check
parameters, and load the configuration to the Model Advisor.

Copy the Model to Your Current Directory

Copy model AdvisorCustomizationExample.slx and its supporting files, including the custom
Model Advisor configuration file demoConfiguration. json, to your writeable directory.

1. In MATLAB, set your current folder to a writeable directory.

2. Enter this command in the MATLAB command prompt. MATLAB copies the example files to your
writeable directory.

copyfile(fullfile(matlabroot, 'examples', 'slcheck', 'main', 'prepare cust chk code.m"),...
'prepare cust chk code.m','f');

run('prepare cust chk code.m');

Open the Model and Review the Model Advisor Configuration

In this example, you will refresh the Model Advisor check information cache, open the model, and
review the Model Advisor configuration. Specifically, you will review the effect that the configuration
has on the Model Advisor user interface and edit-time checking.

1. To refresh the Model Advisor check information cache, at the MATLAB command prompt, type:
Advisor.Manager.refresh customizations();

2. Open the example model.

open_system('AdvisorCustomizationExample.slx"');

3. On the Modeling tab, open the Model Advisor. You can also open the Model Advisor by typing
this command at the MATLAB command prompt:

modeladvisor('AdvisorCustomizationExample.slx"');

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manage

4. In the By Task tab, make sure that the box beside these checks is selected:

7-7

7 Model Advisor Customization

* Modeling Standards for MAB > Naming Conventions > Content > Check character usage
in block names

* Modeling Standards for MAB > Simulink > Diagram Appearance > Check whether block
names appear below blocks

5. Right-click on the Modeling Standards for MAB folder and select Run Selected Checks. In the
results, notice that both checks are marked with a warning. See “Run Model Advisor Checks and
Review Results” on page 3-4 for more information about using the Model Advisor.

2 Model Advisor - AdvisorCustomizationExample — [m} w

File Edit Run Settings Highlighting Help

P®m e

Modeling for MAB
v @ E@ Modeling Standards for MAB "
hd IE‘ @ Naming Conventions Model {&d\.’isor
D £ General Analysis
v @ Content Group of MAB checks
[=] check subsystem names Run Selected Checks
D (=] Check port block names
& Check character usage in block names D Show repart after run
[1 5] check length of subsystem names Report

D (=] Check length of block names

Report: Generate Report... | ..\report 1570.html
|:| (=] Check length of Inport and Outport names
o Date/Time: 07-Jan-2020 12:54:59
|:| (=] Check character usage in signal names and bus names
Summary: (@ Pass: 0 D Fai: 0 M Warning: 2 [Z] Not Run: 139
[=] ~Check character usage in parameter names
D (=] Check length of signal and bus names Tips
|:| (=] ~Check length of parameter names To process all enabled items in this folder and generate a new report, click "Run Selected Checks".
|:| =] Check character usage in Stateflow data names Right-click to select or deselect all items in this folder.
D (=] Check length of Stateflow data name To automatically display the report after processing, select "Show report after run”.

[=] check duplication of Simulink Data names To display the last report generated, dick the "Report” path link.

For a list of all ble acti ight-click an item in the Task Hi Fry.
|:| (=] ~Check unused data in Simulink Model rals &l possible actions, nght-clic an item in the Task Hierarchy.

To show or hide By Product folder, select or dear "Show By Product Folder” in the Settings = Preferences

[EE] Check for unused data in Stateflow Charts dialog box.
[5] check usage of restricted variable names To show or hide By Task folder, select or clear "Show By Task Folder” in the Settings > Preferences dialog box.
v W] C@ simulink

Legend
D lil Configuration Parameters

hd IE l@, Diagram Appearance
D (=] Check for Simulink diagrams using nonstandard display attribut
|:| (=] Check Model font settings
& Check whether block names appear below blocks

“ Running this check triggers an Update Diagram.

[| Cherk the disnlav attribites of hinck names e
£ >
@f Upgrade Advisor
b"é, Code Generation Advisor
(:iﬂ Help

6. Return to the Simulink model editor.

7. On the Modeling tab, verify that the Model Advisor > Edit-Time Checks option is selected.
Observe that the Logical Operator blocks is highlighted. Click on the warning icon above the block
to view edit-time check violations. For more information, see “Check Your Model by Using Edit Time
Checks” on page 3-6.

Use the Model Advisor Configuration Editor to Customize the Model Advisor

'Pi AdvisorCustornizationExample - Simulink prerelease use — O X
SIMULATION MODELING FORMAT
[P 4] Stop Time | 48 %
@ - @ & >
Model = * | ModelData |7 piogel Insert || Update [WNemal) g
Advisor v {4 = Editor Settings = Subsystem Model v E@ Fast Restart -
EVALUATE & MANAGE DESIGN SETUP COMPONENT COMPILE SIMULATE ry
AdvisorCustomizationExample
® Advisorﬂustom'lzat'lonExample 4 i
A
@
o o
&, | winta(18)
— |. sum_out Yy
#
equal_to_count
O
YYY
T L
x N
1 1
z switch_out : .
lcon shape of logical operator block is not rectangular
- Suggested Actions
Change the icon shape of logical operator Fix
block to rectangular.
5] Compaonent: Mode! Advisor @ Suppress @
» vl
Ready 113% FixedStepDiscrete

Load a Model Advisor Configuration

In this example, you will load the Model Advisor configuration file that was shipped with example
AdvisorCustomizationExample.s1x. The Model Advisor configuration file can be in . json (as of
R2020a) or .mat (R2019b and earlier) format.

1. To load a custom configuration file, select Settings > Load Configuration and select the
configuration you would like to use. For this example, select demoConfiguration. json from the
writeable directory you specified previously. The Model Advisor updates to reflect the new
configuration and displays the configuration file name at the top of the window.

2. Explore the Model Advisor and observe that that only three checks are available in this
configuration.

7 Model Advisor Customization

2 Model Advisor - AdvisorCustomizationExample — O ¥

File Edit Run Settings Highlighting Help

NIFE A —

Demo
w Model Advisor Ll “
Madel Advisor
v [] [By Product
Analysis

[£ Embedded Coder

O 3 simulink Embedded Cader h.un Selected Checks

[] £ simulink Coder (] show report after run
[£ simulink Code Inspector

Report
(] 3 AUTOSAR Blockset
[] £ DO Qualification Kit Report: Generate Report...| ...\report 674.html
[= simulink Check Date/Time: Not Applicable
[J &) 1EC Certification Kit Summary: 0 Pass: 0 0 Fail: 0 Ay Warning: 0 [=] Not Run: 3
(] [= HOL Coder Tios

|:| i) Simscape

To process all enabled items in this folder and generate a new report, click "Run

|:| =) Simutink Requirements Selected Checks".
v [] &5 bemo Right-click to select or deselect all items in this folder.
[[Z] check whether block names appear below blocks To automatically display the report after processing, select "Show report after run®.

D =] Check model configuration parameters To display the last report generated, dick the "Report” path link.

) ~) For a list of all possible actions, right-click an item in the Task Hierarchy.
|:| [=] Check icon shape of Logical Operator blocks
To show or hide By Product folder, select or clear "Show By Product Folder" in the

[] I£3 simulink Design Verifier W Settings > Preferences dialog box.

< > To show or hide By Task folder, select or clear "Show By Task Folder” in the Settings >
Preferences dialog box.

(@l Upgrade Advisor Legend

Code Generation Advisor “ Running this check triggers an Update Diagram.

(1] Performance Advisor
Help

3. To specify configuration file demoConfiguration. json as the default Model Advisor
configuration, select Settings > Set Current Configuration as Default.

To clear the default configuration setting, select Settings > Clear default configuration settings.
When you do not specify a default configuration, the Model Advisor uses the standard configuration
that is defined by your system administrator.

Create a New Model Advisor Configuration

In this example, you will create a custom configuration file named

demo_Configuration IS026262 MAB. json. You will use this configuration file to define the
MathWorks Advisory Board (MAB) modeling guidelines checks that you want to execute by using the
Model Advisor user interface.

1. In model AdvisorCustomizationExample.slx, open the Model Advisor and check that
demoConfiguration. json is the current configuration.

2. Select Settings > Open configuration editor to open the Model Advisor Configuration Editor.

Note: The file that is currently loaded in the Model Advisor cache automatically displays when you
open the Model Advisor Configuration Editor.

7-10

Use the Model Advisor Configuration Editor to Customize the Model Advisor

3. Click New. In the Model Advisor pane, select ALl checks. This specifies that the configuration
you are viewing is for all of the checks in the Model Advisor user interface.

4. Highlight the Model Advisor Configuration Editor root folder and click New Folder. Select the new
folder and in the Information tab, change the display name to IS0 26262 Standard Checks.
Click Apply.

5. In the toolstrip, select Show Library to display the Library pane. In the By Product tab search
field, enter ISO 26262.

6. Right-click on the Simulink Check > Modeling Standards > IEC 61508, IEC 62304,
IS0 26262, and EN 50128 Checks folder and select Copy. Right-click on your custom ISO 26262
Standard Checks folder and click Paste. Verify that the folder and checks have been copied to your
custom configuration folder.

Note: Checks that are copied from the Library pane retain their default parameter settings. When
they are pasted into your custom configuration folder, the box beside each check is not selected.

7. In the By Task folder on the Model Advisor pane, right-click on the Modeling Standards for
MAB folder and select Cut. Click on the Model Advisor Configuration Editor root folder and click
Paste. The folder is removed from the By Task folder and is added as a new subfolder in the Model
Advisor Configuration Editor root folder.

Note: Checks that are copied or cut from a folder in the Model Advisor pane retain their user-
defined parameter settings. When a check is included in multiple folders, you can specify different
parameters for each check individually.

8. Select the IS0 26262 Standard Checks folder and use the Move Down button to change the
position this folder in the hierarchy. The Model Advisor will execute the checks in the Modeling
Standards for MAB folder first.

9. Select the By Product and By Task folders and select Delete.

10. Click Save As and rename the configuration file to demo Configuration IS026262 MAB.
Select Yes at the prompt to save the configuration as the default configuration. The file automatically
saves in . json format.

Note: If you have previously designated a default configuration, you can use Clear default
configuration setting to clear the flag that specifies the current default configuration file. Clicking
the button does not modify the configuration that is currently displayed in the Model Advisor
Configuration Editor.

11. Close the Model Advisor Configuration Editor and the AdvisorCustomizationExample.slx
model.

12. Refresh the Model Advisor cache and open model AdvisorCustomizationExample.slx by
entering the following in the MATLAB command line:

Advisor.Manager.refresh customizations();
open_system('AdvisorCustomizationExample.slx"');

13. Open the Model Advisor and check that configuration file
demo_Configuration IS026262 MAB. json is being used. The Model Advisor displays the folders
Modeling Standards for MAB and ISO 26262 Standard Checks.

7-11

7 Model Advisor Customization

7-12

Specify Model Advisor Checks

In this example, you will customize the checks in your custom configuration file,
demo_Configuration IS026262 MAB.json, and review the effect that your customizations have
on the Model Advisor analysis of the AdvisorCustomizationExample.slx model.

1. On the Modeling tab, click Model Advisor > Model Advisor Configuration Editor and, if
necessary, open demo_Configuration IS026262 MAB.json.

2. In the Model Advisor pane, verify that the configuration focus is set to the ALl checks option.

3. Clear the check box the box beside the Model Advisor Configuration Editor root node folder.
(This step is optional. However, deselecting the checks allows you to more easily view the results of
using the Model Advisor Configuration Editor to specify checks for display in the Model Advisor.)

4. To allow you to use the Model Advisor user interface to specify which checks to include in the
Model Advisor analysis, right-click on the Model Advisor Configuration Editor root folder and click
Enable. (Note: Enable is the default setting. This option is dimmed when none of the checks are
disabled.)

5. Check the box beside the Modeling Standards for MAB > Naming Conventions >Content >
Check character usage in block name check.

6. Right-click on each of these checks and select Disable:

* Modeling Standards for MAB > Naming Conventions > Content > Check character usage
in block names

* Modeling Standards for MAB > Naming Conventions > Content > Check length of
subsystem name

7. Click the Modeling Standards for MAB > Simulink > Diagram Appearance > Check
whether block names appear below blocks check and, in the Information tab, select Fail for
the Check result when issues are flagged option. Click Apply.

Note: The default for the Check result when issues are flagged option is Warning.
8. Click Save to save the configuration. Close the Model Advisor Configuration Editor and the model.

9. Refresh the Model Advisor cache and open model AdvisorCustomizationExample.slx by
entering the following in the MATLAB command line:

Advisor.Manager.refresh customizations();
open_system('AdvisorCustomizationExample.slx"');

10. Open the Model Advisor and verify that configuration file
demo_Configuration IS026262 MAB. json is being used.

Observe these checks, which reflect the settings that you chose in the Model Advisor Configuration
Editor:

* The Modeling Standards for MAB > Naming Conventions > Content > Check character
usage in block names check is dimmed and the check box is selected. This check will always
execute in a Model Advisor analysis and, because it is dimmed, you cannot choose to exclude it
from the analysis.

Use the Model Advisor Configuration Editor to Customize the Model Advisor

* The Modeling Standards for MAB > Naming Conventions > Content > Check length of
subsystem names check is dimmed and the check box is not selected. This check will not be
included in the analysis and, because it is dimmed, you cannot select it for inclusion in the
analysis.

11. Check the box beside the Modeling Standards for MAB > Simulink > Diagram Appearance
> Check whether block names appear below blocks check.

12. To run the Model Advisor analysis, right-click on the Model Advisor Standards for MAB root
node and select Run Selected Checks.

13. Click on the following checks and review the Model Advisor analysis results:

* The Modeling Standards for MAB > Naming Conventions > Content > Check character
usage in block names check is marked with a warning icon and the results specify the check
violation is in the Gain block.

* There are no results for the Modeling Standards for MAB > Naming Conventions > Content
> Check length of subsystem check because it could not be selected for the analysis.

* The Modeling Standards for MAB > Simulink > Diagram Appearance > Check whether
block names appear below blocks check is marked with a fail icon. This behavior is intended;
you specified this check settings by using the Model Advisor Configuration Editor.

4 Model Advisor - AdvisorCustomzationExample CAMATLAB\MACE\MACE example\deme_Configuration_|5026262_MAB json - [m} X

File Edit Run Settings Highlighting Help

INIrE Nl ——" T

ing for MAB
v Model Advisor)

[I 150 26262 Standard Chacks

v |E| [Ii Modeling Standards for MAE
v El LE Naming Corvertions

|:| 3 Gereral D Show repert ater run

v [C& cortent

Mndel Artvicnr

Analysis

Run Selected Checks

Repor:
71 =] herk suhsystem names
"1 =] Cheek port block names Report: Generate Report...| ..\report 33.Hml
Chietk charatle wsage in biuck nanies DteyTime 08 Jan 2020 08:16:02
Lheck IEngih of subsys:em names Summary: @ P @ il 1 48 Warning: 2] Mot Rur: 138
] Z=] Check length of black rames Tios

—1 =] check leng of Inport and Outport rames To process al enabled items in this folder and oenerate a new report, clizk "Run Selected Checks".

:‘ =] Check character usage in signal names anc bus names
:l =] ~Check character usage in parameter names
1 =1 Check length of signal and bus names
_1 =] ~Check length of parameter names
"] =] cheek character usage in Smtclow data names
71 = Chieck length of Sleteflow Lald name
1 =] tneck dupiication of Simulink Lata names
1 =1 ~Check unusec data in Simulink Model
:l =] Check for unused datain Stateflow Charts
:l =] Check usage of resicted variable namss
v |i| I_E Simulink
[£ corfiguration Parameters
v [m] 3 Diagram Appearance
"] =1 cheek for Simuink diagrams using nonstandard display attibutes
71 =] Chiek Muded funl seltings
71 & tneck whether biock names appear below blocks
—_1 =] Check the display attritutes of block nemes
] =] Check far nondsfault black attributes
:‘ =] Check Model Description

Rght-dlick to select or deselect all items in this folder.

To automatically dispay the report after processing, select "Show report after run™.

To display the last report generaterd, dick the "Report™ path link

Far a list of Al nossihe actions, right-click an item in the Tas< Hisrarchy

Ti show nr hide Ry Product falder, selert or dear "Show Ry Prodisct Snlder” in the Settings = Preferences dialng hoy.
T show nr hiele Ry Task flrr, salert or clear "Show Ry Task Fridar inthe Safinge > Preferences dialng hox

Legend

“~ Running this check triggers an Upcate Diagram.

7-13

7 Model Advisor Customization

7-14

Specify Checks for Edit-Time Checking

In this example, you will specify the checks that are available in the
demo Configuration IS026262 MAB. json configuration file for execution during edit-time
checking.

1. In model AdvisorCustomizationExample.slx, on the Modeling tab, make sure that the
Model Advisor > Edit-Time Checks option is selected.

2. On the Modeling tab, click Customize Edit-Time Checks. The Model Advisor Configuration
Editor opens with the configuration focus option set to Edit-Time supported checks. Only a
subset of Model Advisor checks are supported for edit-time checking; the Edit-Time supported
checks option displays only checks that support edit-time checking.

3. In the Model Advisor pane, check the box beside the Modeling Standards for MAB > Simulink
> Operation Blocks > Check icon shape of Logical Operator blocks check.

4. Click Save to save the configuration. Close the Model Advisor Configuration Editor. Return to the
AdvisorCustomizationExample.slx model.

5. In the Simulink editor, notice that the Logical Operator block is now highlighted. Open the
violation and click Fix. The Model Advisor changes the block to a rectangular shape and the
highlighted edit-time check warning clears.

See Also
ModelAdvisor.Check | ModelAdvisor.setDefaultConfiguration

More About

. “Defining Custom Model Advisor Checks Workflow” on page 6-34

. “Customize the Configuration of the Model Advisor Overview” on page 7-2

. “Update the Environment to Include Your Custom Configuration” on page 7-22

. “Load and Verify a Custom Configuration” on page 7-23

Programmatically Customize Tasks and Folders for the Model Advisor

Programmatically Customize Tasks and Folders for the Model
Advisor

Customization File Overview

The s1_customization.m file contains a set of functions for registering and defining custom
checks, tasks, and groups. To set up the sl _customization.m file, follow the guidelines in this
table.

Note If the By Product folder is not displayed in the Model Advisor window, select Show By
Product Folder from the Settings > Preferences dialog box.

Function Description Required or Optional
sl customization() Registers custom checks and tasks, |Required for customizations to the
folders with the Simulink Model Advisor.

customization manager at startup.
See “Defining Custom Model
Advisor Checks Workflow” on page
6-34.

One or more check definitions Defines custom checks. See Required for custom checks and to
“Defining Custom Model Advisor add custom checks to the By
Checks Workflow” on page 6-34. Product folder.

One or more task definitions Defines custom tasks. See “Define |Required to add custom checks to
Custom Tasks” on page 7-16. the Model Advisor, except when
adding the checks to the By
Product folder. Write one task for
each check that you add to the

Model Advisor.
One or more groups Defines custom groups. See “Define |Required to add custom tasks to
Custom Tasks” on page 7-16. new folders in the Model Advisor,

except when adding a new
subfolder to the By Product folder.
Write one group definition for each
new folder.

Register Tasks and Folders
Create sl_customization Function

To add tasks and folders to the Model Advisor, create the sl _customization.m file on your
MATLAB path. Then create the sl _customization() function in the sl customization.m file on
your MATLAB path.

Tip

* You can have more than one sl _customization.m file on your MATLAB path.

7-15

7 Model Advisor Customization

7-16

* Do not place an s1_customization.m file that customizes the Model Advisor in your root
MATLAB folder or its subfolders, except for the matlabroot/work folder. Otherwise, the Model
Advisor ignores the customizations that the file specifies.

The sl customization function accepts one argument, a customization manager object, as in this
example:

function sl _customization(cm)

The customization manager object includes methods for registering custom checks, tasks, and
folders. Use these methods to register customizations specific to your application, as described in the
sections that follow.

Register Tasks and Folders
The customization manager provides the following methods for registering custom tasks and folders:
* addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the By Task folder of
the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function that defines the checks
to add to the Model Advisor as instances of the ModelAdvisor.FactoryGroup class.

 addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

Registers the tasks and folders that you define in taskDefinitionFcn to the folder in the Model
Advisor that you specify using the ModelAdvisor.Root.publish method or the
ModelAdvisor.Group class.

The taskDefinitionFcn argument is a handle to the function that defines custom tasks and
folders. Simulink adds the checks and folders to the Model Advisor as instances of the
ModelAdvisor.Task or ModelAdvisor.Group classes.

The following example shows how to register custom tasks and folders:

Note If you add custom checks within the s1 _customization.m file, include methods for
registering the checks in the sl _customization function.

Define Custom Tasks
Add Check to Custom or Multiple Folders Using Tasks

You can use custom tasks for adding checks to the Model Advisor, either in multiple folders or in a
single, custom folder. You define custom tasks in one or more functions that specify the properties of
each instance of the ModelAdvisor.Task class. Define one instance of this class for each custom
task that you want to add to the Model Advisor. Then register the custom task. The following sections
describe how to define custom tasks.

To add a check to multiple folders or a single, custom folder:

Programmatically Customize Tasks and Folders for the Model Advisor

1 Create a check using the ModelAdvisor.Check class.
Register a task wrapper for the check.

If you want to add the check to folders that are not already present, register and create the
folders using the ModelAdvisor.Group class.

Add a check to the task using the ModelAdvisor.Task.setCheck method.
5 Add the task to each folder using the ModelAdvisor.Task.addTask method and the task ID.

Create Custom Tasks Using MathWorks Checks

You can add MathWorks checks to your custom folders by defining the checks as custom tasks. When
you add the checks as custom tasks, you identify checks by the check ID.

To find MathWorks check IDs:

In the hierarcy, navigate to the folder that contains the MathWorks check.

2 In the right pane of the Model Advisor, select the Source tab. The Model Advisor displays the
Title, TitleID, and Source information for each check in the folder.

Note If the Source tab is not available, open Settings > Preferences and select Show Source
Tab

3 Select and copy the TitleID of the check that you want to add as a task.

Display and Enable Tasks
The Visible, Enable, and Value properties interact the same way for tasks as they do for checks.
Define Where Tasks Appear

You can specify where the Model Advisor places tasks within the Model Advisor using the following
guidelines:

* To place a task in a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

* To place a task in a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup
class.

Task Definition Function

The following example shows a task definition function. This function defines three tasks.

Define Custom Folders
About Custom Folders

Use folders to group checks in the Model Advisor by functionality or usage. You define custom folders
in:

* A factory group definition function that specifies the properties of each instance of the
ModelAdvisor.FactoryGroup class.

7-17

7 Model Advisor Customization

7-18

* A task definition function that specifies the properties of each instance of the
ModelAdvisor.Group class.

Define one instance of the group classes for each folder that you want to add to the Model Advisor.
Add Custom Folders
To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or ModelAdvisor.FactoryGroup classes.
2 Register the folder.

Define Where Custom Folders Appear

You can specify the location of custom folders within the Model Advisor using the following
guidelines:

* To define a new folder in the Model Advisor Task Manager, use the ModelAdvisor.Group
class.

* To define a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup class.

Note To define a new folder in the By Product folder, use the ModelAdvisor.Root.publish
method within a custom check. If the By Product folder is not displayed in the Model Advisor
window, select Show By Product Folder from the Settings > Preferences dialog box.

Group Definition

The following examples shows a group definition. The definition places the tasks inside a folder called
My Group under the Model Advisor root. The task definition function includes this group definition.

The following example shows a factory group definition function. The definition places the checks into
a folder called Demo Factory Group inside of the By Task folder.

See Also

ModelAdvisor.Check | ModelAdvisor.FactoryGroup | ModelAdvisor.Group |
ModelAdvisor.Procedure | ModelAdvisor.Task | publish

More About

. “Defining Custom Model Advisor Checks Workflow” on page 6-34

. “Display and Enable Checks” on page 6-38

. “Customize the Configuration of the Model Advisor Overview” on page 7-2

Programmatically Create Procedural-Based Configurations

Programmatically Create Procedural-Based Configurations

You can create a procedural-based configuration that allows you to specify the order in which you
make changes to your model. You organize checks into procedures using the procedures API. A check
in a procedure does not run until the previous check passes. A procedural-based configuration runs
until a check fails, requiring you to modify the model to pass the check and proceed to the next
check. Changes you make to your model to pass the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Customize the Configuration of the Model Advisor Overview” on page
7-2.
Decide on order of changes to your model.

3 Identify checks that provide information about the modifications you want to make to your model.
For example, if you want to modify your model optimization settings, the Check optimization
settings check provides information about the settings. You can use custom checks and checks
provided by MathWorks.

4 (Optional) Author custom checks in a customization file. See “Create Model Advisor Checks”.
Organize the checks into procedures for a procedural-based configuration:
a Create procedures by using the procedure API. For detailed information, see “Create
Procedural-Based Configurations” on page 7-19.

b Create the custom configuration “Use the Model Advisor Configuration Editor to Customize
the Model Advisor” on page 7-3

6 (Optional) Deploy the custom configurations to your users. For detailed information, see “Deploy
Custom Configurations” on page 7-24.

7 Verify that models comply with modeling guidelines. For detailed information, see “Run Model
Advisor Checks and Review Results” on page 3-4.

Create Procedural-Based Configurations
Create Procedures Using the Procedures API

You create procedures with the ModelAdvisor.Procedure class API. You first add the checks to
tasks, which are wrappers for the checks. The tasks are added to procedures.

Note When creating procedural checks, be aware of potential conflicts with the checks. Verify that it
is possible to pass both checks.

You use the ModelAdvisor.Procedure class to create procedural checks.

1 Add each check to a task using the ModelAdvisor.Task.setCheck method. The task is a
wrapper for the check. You cannot add checks directly to procedures.

2 Add each task to a procedure using the ModelAdvisor.Procedure.addTask method.

7-19

7 Model Advisor Customization

Define Procedures

You define procedures in a procedure definition function that specifies the properties of each instance
of the ModelAdvisor.Procedure class. Define one instance of the procedure class for each
procedure that you want to add to the Model Advisor. Then register the procedure using the
ModelAdvisor.Root.register method.

You can add subprocedures or tasks to a procedure. The tasks are wrappers for checks.

» Use the ModelAdvisor.Procedure.addProcedure method to add a subprocedure to a
procedure.

* Use the ModelAdvisor.Procedure.addTask method to add a task to a procedure.

The following code example adds subprocedures to a procedure:

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.example.Procedure');

%Create 3 sub procedures

MAP1=ModelAdvisor.Procedure('com.mathworks.example.procedure subl')
MAP2=ModelAdvisor.Procedure('com.mathworks.example.procedure sub2')
MAP3=ModelAdvisor.Procedure('com.mathworks.example.procedure sub3');

’
’

%Add sub procedures to procedure
addProcedure(MAP, MAP1);
addProcedure(MAP, MAP2);
addProcedure(MAP, MAP3);

%sregister the procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds tasks to a procedure:

%Create three tasks

MAT1=ModelAdvisor.Task('com.mathworks.tasksample.myTaskl');
MAT2=ModelAdvisor.Task('com.mathworks.tasksample.myTask2');
MAT3=ModelAdvisor.Task('com.mathworks.tasksample.myTask3');

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.tasksample.myProcedure');

%Add the three tasks to the procedure
addTask(MAP, MAT1);
addTask (MAP, MAT2);
addTask(MAP, MAT3);

%register the procedure and tasks
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAT1);
mdladvRoot.register(MAT2);
mdladvRoot.register(MAT3);

7-20

Programmatically Create Procedural-Based Configurations

You can specify where the Model Advisor places a procedure using the
ModelAdvisor.Group.addProcedure method. The following code example adds procedures to a
group:

%Create three procedures

MAP1=ModelAdvisor.Procedure('com.mathworks.sample.myProcedurel');
MAP2=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure2');
MAP3=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure3"');

%Create a group
MAG = ModelAdvisor.Group('com.mathworks.sample.myGroup');

%Add the three procedures to the group
addProcedure(MAG, MAP1);
addProcedure (MAG, MAP2);
addProcedure (MAG, MAP3);

%register the group and procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAG);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

See Also
ModelAdvisor.Check | ModelAdvisor.Procedure

More About

. “Defining Custom Model Advisor Checks Workflow” on page 6-34
. “Customize the Configuration of the Model Advisor Overview” on page 7-2

7-21

7 Model Advisor Customization

Update the Environment to Include Your Custom Configuration

To make custom configuration available for use by the Model Advisor, you need to first update your
Simulink environment to refresh the Model Advisor cache. This includes the creation of new or
modifications to existing:

* .json files by using the Model Advisor Configuration Editor. See “Use the Model Advisor
Configuration Editor to Customize the Model Advisor” on page 7-3.

* sl customization.m files for custom Model Advisor checks. See “Create Model Advisor
Checks”.

To update your environment:

1 Ifyou previously started the Model Advisor:

a Close the model from which you started the Model Advisor

b Clear the data associated with the previous Model Advisor session by removing the slprj
folder from your code generation folder (Simulink).

2 Inthe MATLAB command line, enter:

Advisor.Manager.refresh customizations
3 Open your model

In the Modeling tab, select Model Advisor to open the Model Advisor. If you have customized
the configuration by using the Model Advisor Configuration Editor, load and verify the
configuration as described in “Load and Verify a Custom Configuration” on page 7-23.

7-22

Load and Verify a Custom Configuration

Load and Verify a Custom Configuration

You can load a custom configuration for use in the Model Advisor. Once you have verified that the
custom configuration displays the folders and checks that were specified by using the Model Advisor
Configuration Editor, you can set it so that the Model Advisor use that configuration every time you
open the Model Advisor.

Before you load the configuration, use Advisor.Manager.refresh customizations to update
your Simulink environment. See “Update the Environment to Include Your Custom Configuration” on
page 7-22

1
2

In the Modeling tab, select Model Advisor to open the Model Advisor.

Select Settings > Load Configuration. If you see a warning that the Model Advisor report
corresponds to a different configuration, click Load to continue.

In the Open dialog box, navigate to and select the configuration file that you want to edit.
Click Open.

Simulink reloads the Model Advisor using the new configuration; observe that the name of the
configuration file is identified at the top of the window.

Note The Model Advisor automatically warns you of checks that are missing when loading a
Model Advisor configuration. To suppress this warning, see “Suppress Warning Message for
Missing Checks” on page 7-7.

Browse the content of the Model Advisor to verify that folders and checks specified in the custom
configuration file are displayed. If the correct configuration file is not being used, see “Use the
Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3 and “Update
the Environment to Include Your Custom Configuration” on page 7-22 .

To instruct the Model Advisor to always use this configuration, select Settings > Set Current
Configuration as Default.

You can also use the ModelAdvisor.setDefaultConfiguration function to programmatically
specify the default configuration used by the Model Advisor.

7-23

7 Model Advisor Customization

Deploy Custom Configurations

7-24

When you create a custom configuration, often you deploy the custom configuration to your
development group. Deploying the custom configuration allows your development group to review
models using the same checks. You can deploy custom configurations whether you created the
configuration using the Model Advisor Configuration Editor or within the customization file.

To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more than one file.

If You...

Using the...

Distribute...

Created custom Model Advisor
checks

Customization file

* sl customization.m

+ Files containing check and
action callback functions (if
separate)

Created custom Model Advisor
configuration files

Model Advisor Configuration
Editor

Configuration .json file

1 Distribute the files and tell the user to include these files on the MATLAB path.
2 Instruct the user to load the custom configuration.

Create and Deploy a Model Advisor Custom Configuration

Create and Deploy a Model Advisor Custom Configuration

To check that a model meets your company's standards and modeling guidelines, you can customize
the Model Advisor. This example shows you how to add custom checks to the Model Advisor and
remove shipping checks that you do not require. You can save a custom configuration and deploy it to
others in your development group. Deploying a custom configuration allows your development group
to review models using the same set of checks.

Define Custom Checks
This example defines these three types of custom checks:

* A pass/fail check that groups results by blocks and subsystems and provides a fix action.
* A check that verifies model configuration parameter settings.
* A check that specifies a constraint for a block parameter setting and provides a fix action.

In this example, you will add the three checks to the Model Advisor and remove all shipping checks.
1. Set your current folder to a writeable directory.

2. Copy the script prepare _cust chk code to your current folder and run the script. The script
copies the files necessary for this example to your current folder.

copyfile(fullfile(matlabroot, ‘examples', 'slcheck', 'main', 'prepare cust chk code.m'),...
'prepare_cust_chk code.m','f');
run('prepare_cust_chk code.m');

3. One of the files, s1_customization.m, includes an s1_customization function that defines
custom checks. Open and inspect the sl _customization.mfile.

function sl customization(cm)
% SL CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2019 The MathWorks, Inc.

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

function defineModelAdvisorChecks
defineDetailStyleCheck;
defineConfigurationParameterCheck;
defineBlockConstraintCheck;

The s1 _customization function accepts a customization manager object. The customization
manager object includes the addModelAdvisorCheckFcn method for registering custom checks.
The input to this method is a handle to a function (defineModelAdvisorChecks). This function
contains calls to the three check definition functions that correspond to the three custom checks.

Pass/Fail Check with Fix Action

The defineDetailStyleCheck.m file contains the defineDetailStyleCheck definition function,
which defines a check that lists blocks whose names are not displayed below the blocks. This check

7-25

7 Model Advisor Customization

7-26

provides a fix that moves those names below the blocks. The name of this check is Check whether
block names appear below blocks. Open and inspect the defineDetailStyleCheck.m file.

function defineDetailStyleCheck
mdladvRoot = ModelAdvisor.Root;

% Create ModelAdvisor.Check object and set properties.

rec = ModelAdvisor.Check('com.mathworks.sample.detailStyle');
rec.Title = 'Check whether block names appear below blocks';
rec.TitleTips = 'Check position of block names';
rec.setCallbackFcn(@DetailStyleCallback, 'None', 'DetailStyle');

% Create ModelAdvisor.Action object for setting fix operation.
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@Action(CB);

myAction.Name='Make block names appear below blocks';
myAction.Description='Click the button to place block names below blocks";
rec.setAction(myAction);

mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

end

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

% Find all blocks whose name does not appear below blocks
violationBlks = find system(system, 'Type','block',...
'NamePlacement', 'alternate’, ...
'ShowName', 'on');
if isempty(violationBlks)
ElementResults = ModelAdvisor.ResultDetail;
ElementResults.IsInformer = true;
ElementResults.Description = 'Identify blocks where the name is not displayed below the bloc
ElementResults.Status = 'All blocks have names displayed below the block.';
mdladvObj.setCheckResultStatus(true);
else
ElementResults(1l,numel(violationBlks))=ModelAdvisor.ResultDetail;
for i=1l:numel (ElementResults)
ElementResults(i).setData(violationBlks{i});

ElementResults(i).Description = 'Identify blocks where the name is not displayed below tl
ElementResults(i).Status = 'The following blocks have names that do not display below the
ElementResults(i).RecAction = 'Change the location such that the block name is below the

end
mdladvObj.setCheckResultStatus(false);
mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);

function result = ActionCB(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;

Create and Deploy a Model Advisor Custom Configuration

resultDetailObjs = checkObj.ResultDetails;

for i=l:numel(resultDetailObjs)
% take some action for each of them
block=Simulink.ID.getHandle(resultDetailObjs (i) .Data);
set param(block, 'NamePlacement', 'normal');

end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);
end

This check uses the setCallbackFcn type of DetailStyle. Applying this style produces default
formatting, so that you do not have to use the ModelAdvisor.FormatTemplate or the other Model
Advisor formatting APIs to format the results that appear in the Model Advisor. For more information
on how to create this type of check definition function, see “Create a Pass/Fail Model Advisor Check
with Fix Action” on page 6-9.

Model Configuration Parameter Settings Check

The defineConfigurationParameterCheck.m file contains the
defineConfigurationParameterCheck check definition function, which defines a check that
identifies model configuration parameter settings that might impact MISRA C:2012 compliant code
generation. The name of this check is Check model configuration parameters.

This check type requires a supporting XML data file that contains the model configuration parameter
settings that you want to check. This file must be on the MATLAB path. For this example, that file is
configurationParameterDataFile.xml. For more information on how to create this check
type, see “Create Model Advisor Check for Model Configuration Parameters” on page 6-16.

Open and inspect the defineConfigurationParameterCheck.m file.

function defineConfigurationParameterCheck

% Create ModelAdvisor.Check object and set properties.
rec = ModelAdvisor.Check('com.mathworks.sample.configurationParameter');
rec.Title = 'Check model configuration parameters';
rec.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback. ..
(system)), 'None', 'StyleOne');
rec.TitleTips = 'Identify configuration parameters that might impact MISRA C:2012 compliant code

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);

inputParaml = ModelAdvisor.InputParameter;

inputParaml.Name = 'Data File';

inputParaml.Value = 'configurationParameterDataFile.xml";
inputParaml.Type = 'String’;

inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1l 1]);

inputParaml.setColSpan([1l 1]);
rec.setInputParameters({inputParaml});

% -- set fix operation
act = ModelAdvisor.Action;
act.setCallbackFcn(@(task) (Advisor.authoring.CustomCheck.actionCallback...

(task)));
act.Name = 'Modify Settings';
act.Description = 'Modify model configuration settings.';

7-27

7 Model Advisor Customization

rec.setAction(act);

% publish check into Demo group.
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec, 'Demo');

end
Block Parameter Constraint Check

The defineBlockConstraintCheck.m file contains the defineBlockConstraintCheck check
definition function, which defines a check that identifies Logical Operator blocks that do not have a
rectangular shape. The name of this check is Check icon shape of Logical Operator blocks.

This check type supports edit-time checking and requires a supporting XML file that contains the
block constraint information. This XML file must be on the MATLAB path. For this example, that file
name is blockConstraintDataFile.xml. For more information on this check type, see “Define
Model Advisor Checks for Supported or Unsupported Blocks and Parameters” on page 6-27.

Open and inspect the defineBlockConstraintCheck.mfile.

function defineBlockConstraintCheck

rec = Advisor.authoring.createBlockConstraintCheck('com.mathworks.sample.blockConstraint');
rec.Title = 'Check icon shape of Logical Operator blocks';
rec.setCallbackFcn(@(system) (Advisor.authoring.CustomCheck.checkCallback. ..
(system)), 'None', 'StyleOne');
rec.TitleTips = 'Checks icon shape of Logical Operator blocks. Icon shape of Logical Operator sh

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]1);
inputParaml = ModelAdvisor.InputParameter;
inputParaml.Name = 'Data File';

inputParaml.Value = 'blockConstraintDataFile.xml';
inputParaml.Type = 'String';
inputParaml.Description = 'Name or full path of XML data file.';
inputParaml.setRowSpan([1 1]);
inputParaml.setColSpan([1 1]);
rec.setInputParameters({inputParaml});
rec.SupportExclusion = false;

rec.SupportLibrary = true;

% publish check into Demo group.
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.publish(rec, 'Demo');
end

View Custom Checks in the Model Advisor

1. In order for your custom checks to be visible in the Model Advisor, you must refresh the Model
Advisor check information cache. At the MATLAB command prompt, type this command:

Advisor.Manager.refresh customizations();
2. Open the example model.

open_system('AdvisorCustomizationExample.slx"');

7-28

Create and Deploy a Model Advisor Custom Configuration

3. On the Modeling tab, open the Model Advisor. You can also open the Model Advisor by typing
this command at the MATLAB command prompt:

modeladvisor('AdvisorCustomizationExample.slx"');

Updating Model Advisor cache...
Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manage

4. Observe the custom checks in the By Product > Demo folder.

[Model Advisor - AdvisorCustomizationExample — O b4

[&2 = And V|<3:":D"

Check whether block names appear below blocks

v Model Advisor
v [3 By Preduct
[&1 Embedded Coder
L1 & simulink Run This Check
[&= simulink Coder
0 &= Simulink Code Inspector Result: [Not Run View by Recommended Acti ~
[& AUTOSAR Blockset
[£ DO Qualification Kit To run this check, select the check and then click Run
[£ Simulink Check This Check.
[1 &3 IEC Certification Kit
[&= HDL Coder
[] I=3 Simscape
[= simulink Requirements
v []) Demo
[1 5] Check whether block names appear below blocks
[] =] Check model configuration parameters

Analysis ”~

Check position of block names

[=] Check icon shape of Logical Operator blocks
[1 2 simulink Design Verifier
[1 & simulink Control Design

®] & By Task Make block names appear below blocks
£ >

Action
Click the button to place block names below blocks

Result:
é,f Upgrade Advisor

Code Generation Advisor

(3] Performance Advisor
Help Apply

In the check definition functions, the publish command adds the checks to the By Product > Demo
folder. Note, if you already have a default configuration set, the checks do not appear in the Model
Advisor. Restore the default shipping configuration by selecting Settings > Restore Default
Configuration.

Notice that the Check whether block names appear below blocks and the Check model
configuration parameters checks contain an Action box with the option of fixing any check
violations. In your custom check definition file, you supply the fix as part of the action callback

7-29

7 Model Advisor Customization

7-30

function. For more information on how to define custom checks, see “Defining Custom Model Advisor
Checks Workflow” on page 6-34.

On the model canvas, observe that the Unit Delay and Logical Operator blocks are highlighted in
yellow because edit-time checking is on. These blocks contain check violations. Edit-time checking
allows you to interactively check and fix your model for compliance issues.

To fix these violations, hover over a highlighted block and click the yellow icon. A diagnostic box with
a Fix button opens.

To turn edit-time checking on or off, on the Modeling tab, select Model Advisor > Edit-Time
Checks.

Specify and Deploy a Model Advisor Custom Configuration

To specify which checks to include in the Model Advisor and which checks to use for edit-time
checking, use the Model Advisor Configuration Editor.

1. To open the Configuration Editor, on the Modeling tab, select Model Advisor > Model Advisor
Configuration Editor.

2. To add or remove checks and folders, select from the options in the Edit section of the Model
Advisor Configuration Editor.

3. To save a configuration, select Save. A window opens and prompts you to save the configuration as
a .json file. For this example, you do not have to save the configuration, as the corresponding
demoConfiguration. json file ships with this example. You previously copied this file to your
working folder.

4. Close the model and the Model Advisor Configuration Editor.
bdclose;

When you save a configuration, you get a prompt asking you whether you want to save that
configuration as the default configuration. Setting a default configuration allows the Model Advisor to
use that configuration every time you open the Model Advisor. For more information, see “Use the
Model Advisor Configuration Editor to Customize the Model Advisor” on page 7-3.

Load and Run a Model Advisor Custom Configuration
1. Open the example model.
open_system('AdvisorCustomizationExample.slx"');

2. Open the Model Advisor. Load the custom configuration by selecting Settings > Load
Configuration. In the Open dialog box, navigate to and select the demoConfiguration. json file.
Or enter this command at the MATLAB command prompt:

modeladvisor('AdvisorCustomizationExample.slx', 'configuration',...
"demoConfiguration.json');

Model Advisor is removing the existing report.
3. A Warning dialog box opens. Click Remove existing report and continue.

The Model Advisor contains only the By Product > Demo folder with the three custom checks.

Create and Deploy a Model Advisor Custom Configuration

File Edit Rum Settings Highlighting Help
= > /[# 5 = Fnd:| V<

v Model Advisor
v [By Product
v [i Demo
=] Check whether block names appear below blocks
(=] Check model configuration parameters
=] Check icon shape of Logical Operator blocks

Check whether block names appear below blocks
Analysis ~

Check position of block names

Run This Check

Result: [_] Mot Run View by |Recommended Acti ~

Click Run This Check.

Action
Click the button to place block names below blocks

Make block names appear below blocks

Result:

Help Apply

3. Click the Demo folder and click Run Selected Checks.

4. Click the Check whether block names appear below blocks check. This check contains
warnings. To apply a fix and resolve the warnings, on the right pane, click the Make block names

appear below blocks button.

5. Click the Check model configuration parameters check. This check contains warnings. To apply
a fix and resolve the warnings, click the Modify Settings button.

6. Click the Check icon shape of Logical Operator blocks check. This check contains a warning
but no automatic fix. To apply a fix, follow the recommended action.

7. Close the model and the Model Advisor.

bdclose;

8. Remove the files from your working directory. Refresh the Model Advisor check information cache

by typing this command at the command type:

Advisor.Manager.refresh customizations

7-31

7 Model Advisor Customization

ModelAdvisor.Check | ModelAdvisor.Procedure | Simulink.ModelAdvisor | addProcedure
| addTask | register | setCheck

More About
. “Define Custom Tasks” on page 7-16

7-32

Model Slicer

« “Highlight Functional Dependencies” on page 8-2

» “Highlight Dependencies for Multiple Instance Reference Models” on page 8-8

* “Refine Highlighted Model” on page 8-12

* “Refine Dead Logic for Dependency Analysis” on page 8-22

* “Create a Simplified Standalone Model” on page 8-28

* “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 8-29

* “Simplify a Standalone Model by Inlining Content” on page 8-36

* “Workflow for Dependency Analysis” on page 8-38

* “Configure Model Highlight and Sliced Models” on page 8-40

* “Model Slicer Considerations and Limitations” on page 8-43

* “Using Model Slicer with Stateflow” on page 8-49

* “Isolating Dependencies of an Actuator Subsystem” on page 8-51

* “Isolate Model Components for Functional Testing” on page 8-55

+ “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63
* “Simplification of Variant Systems” on page 8-65

* “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer” on page 8-66
» “Programmatically Resolve Unexpected Behavior in a Model with Model Slicer” on page 8-88
+ “Refine Highlighted Model Slice by Using Model Slicer Data Inspector” on page 8-99

* “Debug Slice Simulation by Using Fast Restart Mode” on page 8-106

» “Isolate Referenced Model for Functional Testing” on page 8-113

* “Analyze the Dead Logic” on page 8-117

+ “Investigate Highlighted Model Slice by Using Model Slicer Data Inspector” on page 8-122

8 Model Slicer

Highlight Functional Dependencies

Large models often contain many levels of hierarchy, complicated signals, and complex mode logic.
You can use Model Slicer to understand which parts of your model are significant for a particular
behavior. This example shows how to use Model Slicer to explore the behavior of the
sldvSliceClimateControlExample model. You first select an area of interest, and then highlight
the related blocks in the model. In this example, you trace the dependency paths upstream of Out1l to
highlight which portions of the model affect its behavior.

Open the model and highlight the functional dependencies of a signal in the system:

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
2 Openthe sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 To open the Model Slice Manager, on the Apps tab, under Model Verification, Validation, and
Test gallery, click Model Slicer.
When you open the Model Slice Manager, Model Slicer compiles the model. You then configure
the model slice properties.
In the Model Slice Manager, click the arrow to expand the Slice configuration list.

5 Set the slice properties:

* Name: OutlSlice
) Color: ! (magenta)
* Signal Propagation: upstream

Model Slicer can also highlight the constructs downstream of or bidirectionally from a block in
your model, depending on which direction you want to trace the signal propagation.

6 Add Outl as a starting point. In the model, right-click Out1 and select Model Slicer > Add as
Starting Point.

8-2

Highlight Functional Dependencies

E Model Slice Manager: sldvSliceClimateControlExample *

 Slice configuration list

Name Slice %

-

Name: |Out1Slice | N
Description:

signal propagation: &=

Starting Points Iclearall
= D outt

b Simulation time window
» Refine Dead Logic

|Export to Web| |Generate Slice|

Slicer Active

The Model Slicer now highlights the upstream constructs that affect Qut1l.

8 Model Slicer

If you create two slice configurations, you can highlight the intersecting portions of their highlights.
Create a new slice configuration and view the intersecting portions of the slice configuration you
created above and the new slice configuration:

1 Create a new slice configuration with the following properties

¢ Name: Out3Slice

Color: - (red)
* Signal Propagation: upstream
* Starting point: Out3

2 In the Model Slice Manager, select both the Qut1Slice slice configuration and the Qut3Slice
slice configuration.

8-4

Highlight Functional Dependencies

Model Slicer highlights portions of the model as follows:

L]

U Out3Slice 34%

Muodel Slice Manager: sldvSliceClimateControlExample X
 Slice configuration list 3; @ @
Name Slice % Bl

Out1Slice 57%

Name: | Out3Slice | .

Description:

Signal propagation: #= upstream &

Starting Points [clear all
5 L outs

¥ Simulation time window

» Refine Dead Logic

Export to Web |Generate Slice

Slicer Active

The portions of the model that are exclusively upstream of Outl are highlighted in cyan.

The portions of the model that are exclusively upstream of Out3 are highlighted in red.
The portions of the model that are upstream of both Out1 and Out3 are highlighted in black.

8-5

8 Model Slicer

Teat
R frige ratio nOut

Tmeas

R efrigeration

on_off on_off
on_off
Write off_off_signal
2 delay delay
delay
Write1 Time delay sec l
Tset
DeltaT_fan CeltaT_fan
_____ ——— ==t CoolDn
DT_fan
- Write2 DS M fan temp »Tm=z= HeatDn
— —_— ModeC cniral
4 peiiaTHeatCoo igltaTHeatCod
DTHestCoo
Write:3 D'SM pump temp 7
Tmess
M PumpDelay PumpDelay
umpDelay

8-6

¥

Writed D

I
HeaterAct

Tset

Tmeas

PumpAct

Cut

2

Out2

—D

Out2

After you highlight a portion of your model, you can then refine the highlighted model to an area of
interest. Or, you can create a simplified standalone model containing only the highlighted portion of

your model.

To view the details of the highlighted model in web view, click Export to Web. The web view HTML

file is stored in <current folder>\<model name>\webview.html.

sldv SliceClimateControlExample || View All |
2 [*al sldvSliceClimateControlExample »
E
a w’ on_off
DE Wit oF_of_signal
2 delay delay
s Wikita1 Time delay sec o
Teat
DaltaT_fan DehaT_fan —
= Write2 DSM fan temp $Tmoms Heat
—_— MogeCantl
x» n- taTHestCo
DTHeatCool e O pary teme | Heataric
meas
. o o ay Tir Pumpie
PumpCilay Wit DSM pumg temp 1 Heazer
»

sldvSliceClimateControlExample

Model Slicer highlighted view

Name Qut3Slice Qut1Slice Intersection
Description Intersection for two slice configurations.
Color ——

Signal propagation Upstream Upstream
Starting Points « JOut3 +« _/Ouid

Highlight Functional Dependencies

See Also

More About

. “Refine Highlighted Model” on page 8-12

. “Create a Simplified Standalone Model” on page 8-28

. “Model Slicer Considerations and Limitations” on page 8-43

8 Model Slicer

Highlight Dependencies for Multiple Instance Reference
Models

To highlight the functional dependencies in a Simulink model with multiple instances of a referenced
model, use Model Slicer. You can use Model Slicer on a Simulink model that contains single or
multiple references to a same model in normal simulation mode.

This example shows the behaviour of Model Slicer when there are multiple instances of the
referenced model. The slslicerdemo multi instance model consists of

sldemo mdlref counter referenced two times with different inputs during the course of the signal
flow transition.

1. Open the model slslicerdemo_multi_instance.slx.

open_system('slslicerdemo multi instance');

Highlight Dependencies for Multiple Reference Models

H
[R
H P11l
FG1 haduadiad
sldemo_mdlref_counter PG sldemo_mdlref_counter
upper upper
+HH +HH) | +H) |
+i Li L] input output W -HI- Li L] input output mﬁ-
Dutd, oulB
PG2 PG4

8-8

kower kower
100 Counterf Counterd

10

Copyright 2019 The MathWorks, Inc.

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.
3. In the Model Slicer window, click Add all outports. This sets OutA and OutB as starting points.
4. Ensure that the Signal Propagation is set to upstream.

5. In the Simulation time window section, click Run simulation.

Highlight Dependencies for Multiple Instance Reference Models

Madel Slice Manager: slslicerdemo_multi_instance *

b Slice configuration list é’ﬁ @ @

MName: | untitled | _I

Description:

Signal propagation: 4= |upstream -

Starting Points [clear all
B LF guta
LF outB

* Simulation time window

Run simulation 0]

[

Use existing simulation data

» Refine Dead Logic

Export to Web | | Generate Slice
Slicer Active

6. In the simulation time window, click OK. The model simulation starts.

8-9

8 Model Slicer

E Record simulation time window: slslicerderno_multi_ins...

Please specify stop time of the simulation time window and
press OK to start simulation.
The model is in editable highlight mode now. Consider

turning on Fast Restart for simulation based workflows.
Click here to enable Fast Restart.

Stop time: |10 |
[Log inputs and outputs of the starting points
Save As I}\lesliﬂa'dem_multi_msianuel.slsli

|Clnnge|

ok || cancel |

7. The simulated model highlights the upstream dependency of the outports OutA and OutB.

sldemo_mdlref_counter
upper

sldemo_mdiref_counter N

You can notice that the referenced model in both the instances shows different signal propagations
highlighted by Simulink Slicer for which the signal travels.

8-10

Highlight Dependencies for Multiple Instance Reference Models

8. To generate the slice, click Generate Slice.

More About

» “Highlight Functional Dependencies” on page 8-2
* “Model Slicer Considerations and Limitations” on page 8-43

8-11

8 Model Slicer

Refine Highlighted Model

8-12

After you highlight a model using Model Slicer, you can refine the dependency paths in the
highlighted portion of the model. Using Model Slicer, you can refine a highlighted model by including
only those blocks used in a portion of a simulation time window, or by excluding blocks or certain
inputs of switch blocks. By refining the highlighted portion of your model, you can include only the
relevant parts of your model.

In this section...

“Define a Simulation Time Window” on page 8-12
“Exclude Blocks” on page 8-16

“Exclude Inputs of a Switch Block” on page 8-19

Define a Simulation Time Window

You can refine a highlighted model to include only those blocks used in a portion of a simulation time
window. Defining the simulation time window holds some switch blocks constant, and as a result
removes inactive inputs.

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
2 Openthe sldvSliceClimateControlExample model.

sldvSliceClimateControlExample

3 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.
When you open the Model Slice Manager, Model Slicer compiles the model. You then configure
the model slice properties.
In the Model Slice Manager, click the arrow to expand the Slice configuration list.

5 Set the slice properties:

 Name: QutlSimulation

Color: J (cyan)
* Signal propagation: upstream

Refine Highlighted Model

Model Slice Manager: sldvSliceClimateControlExample X

¢
 Slice configuration list 3; @ U
Name Slice % I:II:I':,

Out1Simulation =

®
Name: |0ut15imu|at|'on | J

Description:

Signal propagation: #= upstream &

Starting Points [Add all outports
Right-click model items fo select.

¥ Simulation time window
» Refine Dead Logic

Export to Web Generate Slice

Slicer Active

6 In the top level of the model, select the Outl block as the slice starting point. Right-click the
Out1l block and select Model Slicer > Add as Starting Point.

The model is highlighted.
7 Inthe Model Slice Manager, select Simulation time window.

To specify the stop time of the simulation time window, click the run simulation button in the
Model Slice Manager.

9 Set the Stop time to 10.

10 Click OK to start the simulation.

8-13

8 Model Slicer

[%a] Model Slice Manager. sldvSliceClimateControlExample X
S — cle
Slice %
%3] Out1Simulation E
E Record simulation time window: sldvSliceClimateContro... X
tame [mmmlaum - Please specify stop time of the simulation time window and
Description: press OK to start simulation. The model is in editable
‘ highlight mode now.
Signal propagation: 4= Stop time: [10.0 |
Starting Points [ciear ai] 1 Log inputs and outputs of the starting points
B D out
Save As |sldvsliceClimateControlExample.slslicey | Change |
[ok | cancel |
~ Simulation time window
Run simulation O]
Use existing simulation data B
» Refine Dead Logic
Slicer Active

The path is restricted to only those blocks that are active until the stop time that you entered.

8-14

Refine Highlighted Model

11 To highlight the model for a defined simulation time window, set the Stop time to 5. Click

Highlight.

¥ Slice configuration list

Model Slice Manager: sldvSliceClimateControlExample

pod

Jhl | ©

OutlSimulation

12%

@
Slice % '::}'
*®

[

MName: | OutlSimulation

|

Description:

Signal propagation: 4= |upstream w7

Starting Points [clear all
B L outt

¥ Simulation time window {Enabled)
Simulation data:

Clear

Time window

sldvSliceClimateControlExample4.slslicex

0 to 10 seconds

Start |0 | stop |5

Actual simulation time: 0 to 10 seconds

b Refine Dead Logic

Slicer Active

Export to Web

Highlight

Inspect Signals

Generate Slice

12 To see how this constraint affects the highlighted portion of the model, open the

Refrigeration subsystem.

The highlighted portion of the model includes only the input ports of switches that are active in

the simulation time window that you specified.

8-15

8 Model Slicer

8-16

1
Q
a
]
-
I
L
=1

DeltaT_fan —
R e
s= SeeET @
Thres bl E . RefrigerationO
ﬂ F
1 L
z L —
0 Compressor

After you refine your highlighted model to include only those blocks used in a portion of a simulation
time window, you can then “Create a Simplified Standalone Model” on page 8-28 incorporating the
highlighted portion of your model.

Exclude Blocks

You can refine a highlighted model to exclude blocks from the analysis. Excluding a block halts the
propagation of dependencies, so that signals and model items beyond the excluded block in the
analysis direction are ignored.

Exclusion points are useful for viewing a simplified set of model dependencies. For example, control
feedback paths create wide dependencies and extensive model highlighting. You can use an exclusion
point to restrict the analysis, particularly if your model has feedback paths.

Note Simplified standalone model creation is not supported for highlighted models with exclusion
points.

1 In the Model Slice Manager, click the arrow to expand the Slice configuration list.

To add a new slice configuration, click the add new button |£|
3 Set the slice properties:

Refine Highlighted Model

 Name: OutlExcluded

) Color: ! (red)

* Signal Propagation: upstream
4 In the top level of the model, select the Outl block as the slice starting point. Right-click the
Out1l block and select Model Slicer > Add as Starting Point.

Muodel Slice Manager: sldvSliceClimateControlExample X

 Slice configuration list 37._ @ @

Name Slice % gh

O QutlSimulation 12% ®

® OutlExcluded 57% =

Name: |0ut1Echuded | 1
Description:

Signal propagation: 4= upstream ~

Starting Points [clear al
B L outt

» Simulation time window

» Refine Dead Logic

Export to Web| |Generate Slice

Slicer Active

The model is highlighted.
To open the subsystem, double-click Refrigeration.
Right-click the Fan switch block, and then select Model Slicer > Add as Exclusion Point.

The blocks that are exclusively upstream of the Fan switch block are no longer highlighted. The
DT Fan Data Store Read block is no longer highlighted.

8-17

8 Model Slicer

7 To see how this constraint affects the highlighted portion of the model, view the parent system.

The DSM fan temp Data Store Memory block and the Write2 Data Store Write block are no
longer highlighted, because the DT Fan Data Store Read in the Refrigeration subsystem no
longer accesses them.

8-18

Refine Highlighted Model

Exclude Inputs of a Switch Block

For complex signal routing, you can constrain the dependency analysis paths to a subset of the
available paths through switch blocks. Constraints appear in the Model Slice Manager.

Note Simplified standalone model creation is not supported for highlighted models with constrained
switch blocks.

Double-click Refrigeration to open the subsystem.

Constrain the On switch block:

* Right-click the switch block and select Model Slicer > Add Constraint.
* In the Constraints dialog box, select Port 3.

* Click OK.

Muodel Slice Manager: sldvSliceClimateCeontrolExample X

* Slice configuration list 3; @ @

Name Slice % s

O Out1Simulation 12% %

* OutlExcluded 34% 5

Name: |0ut1Echuded | !
Description:

Signal propagation: #= upstream <

Starting Points [clear al
B T outt

Exclusion Points [clear all
B L Fan

Constraints [clear all
B T on:porta

¥ Simulation time window
» Refine Dead Logic

Export to Web| Generate Slice

Slicer Active

The path is restricted to the Constantl port on the switch. The blocks that are upstream of Port
1 and Port 2 of the constrained switch are no longer highlighted. Only the blocks upstream of

Port 3 are highlighted.

8-19

8 Model Slicer

3 To see how this constraint affects the highlighted portion of the model, view the parent system.

See Also

More About
. “Create a Simplified Standalone Model” on page 8-28

8-20

Refine Highlighted Model

“Model Slicer Considerations and Limitations” on page 8-43

8-21

8 Model Slicer

Refine Dead Logic for Dependency Analysis

8-22

To refine the dead logic in your model for dependency analysis, use the Model Slicer. To provide an
accurate slice, Model Slicer leverages Simulink Design Verifier dead logic analysis to remove the
unreachable paths in the model. Model Slicer identifies the dead logic and refines the model slice for
dependency analysis. For more information on Dead logic, see “Dead Logic Detection” (Simulink
Design Verifier).

Analyze the Dead Logic

This example shows how to refine the model for dead logic. The sldvSlicerdemo dead logic
model consists of dead logic paths that you refine for dependency analysis.

1. Open the sldvSlicerdemo dead logic model.

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

open_system('sldvSlicerdemo dead logic');

Refine Dead Logic for Dependency Analysis

Simulink Design Verifier
Cruise Control Test Generation

L1 F ¥ enable
enable
[2 } P brake throt = 1 }
brake throt
1 = st
sel [0 100]
s) ——{ewees
speed Actual s
(3) >inc targetf—————» (2)
inc target
€ >laee
dec

Controller

This example shows how to refine the model for dead logic. The model consists of a Controller
subsystem that has a set value equal to 1. Dead logic refinement analyszis identifies the dead logic
in the model. The inactive elements are removed from the slice.

Toggle Constraint

Copyright 2006-2018 The MathWorks, Inc.

Open the Controller subsystem and add the outport throt as the starting point.

8-23

8 Model Slicer

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.
3. Click Get Dead Logic Data.

8-24

Refine Dead Logic for Dependency Analysis

Madel Slice Manager: sldvSlicerdernc_dead_legic et

b Slice configuration list cﬁ-?j-_ @ @

MName: | untitled | __l

Description:

Sigmal propagation: #= |upstream 57

Starting Points [clear all]
B LF throt

b Simulation time window
¥ Refine Dead Logic
Get Dead Logic Data

Export to Web | | Generate Slice

Slicer Active

4. Specify the Analysis time and run the analysis. You can import existing dead logic results from the
sldvData file or load existing .slslicex data for analysis. For more information, see “Refine
Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63.

8-25

8 Model Slicer

8-26

Refine Dead Logic

Generate results

Run analysis

Import SLDV data

Load results

>
Analysis time: |300 Ir@|
Browss for SLDV data file [E|
Save As |‘\5Idv5Iicerdemn_dead_lagic.ﬁlslicex | | Change |
Browse for existing dead logic results _'E_IT_l
| Cancel |

Refine Dead Logic for Dependency Analysis

As the set input is equal to true, the False input to switch is removed for dependency analysis.
Similarly, the output of block OR is always true and removed from the model slice.

See Also

More About
. “Refine Highlighted Model” on page 8-12
. “Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63

8-27

8 Model Slicer

Create a Simplified Standalone Model

8-28

You can simplify simulation, debugging, and formal analysis of large and complex models by focusing
on areas of interest in your model. After highlighting a portion of your model using Model Slicer, you
can generate a simplified standalone model incorporating the highlighted portion of your original
model. Apply changes to the simplified standalone model based on simulation, debugging, and formal
analysis, and then apply these changes back to the original model.

Note Simplified standalone model creation is not supported for highlighted models with exclusion
points or constrained switch blocks. If you want to view the effects of exclusion points or constrained
switch blocks on a simplified standalone model, first create the simplified standalone model, and then
add exclusion points or constrained switch blocks.

1 Highlight a portion of your model using Model Slicer.

See “Highlight Functional Dependencies” on page 8-2 and “Refine Highlighted Model” on page 8-
12.

In the Model Slice Manager, click Generate slice.
In the Select File to Write dialog box, select the save location and enter a model name.

The simplified standalone model contains the highlighted model items.
4 To remove highlighting from the model, close the Model Slice Manager.

When generating a simplified standalone model from a model highlight, you might need to refine the
highlighted model before the simplified standalone model can compile. See the “Model Slicer
Considerations and Limitations” on page 8-43 for compilation considerations.

See Also

More About
. “Configure Model Highlight and Sliced Models” on page 8-40

Highlight Active Time Intervals by Using Activity-Based Time Slicing

Highlight Active Time Intervals by Using Activity-Based Time
Slicing

Stateflow states and transitions can be active, inactive, or sleeping during model simulation. You can
use Model Slicer to constrain model highlighting to only highlight the time intervals in which certain
Stateflow “States” (Stateflow) and “Transitions” (Stateflow) are active. Therefore, you are able to
refine your area of interest to only those portions of your model that affect model simulation during
the operation of the selected states and transitions. You can also constrain model highlighting to the
intersection of the time intervals of two or more states or transitions.

In this section...
“Highlighting the Active Time Intervals of a Stateflow State or Transition” on page 8-29
“Activity-Based Time Slicing Limitations and Considerations” on page 8-35

“Stateflow State and Transition Activity” on page 8-35

Highlighting the Active Time Intervals of a Stateflow State or
Transition

The slslicer fuelsys activity slicing model contains a fault-tolerant fuel control system. In
this tutorial, you use activity-based time slicing to refine a model highlight to only those time
intervals in which certain states and transitions are active. You must be familiar with how to
“Highlight Functional Dependencies” on page 8-2 by using Model Slicer.

Create a Dynamic Slice Highlight for an Area of Interest

1 Add the example folder to the search path.

addpath(fullfile(docroot, 'toolbox"', 'simulink', 'examples'))
2 Openthe slslicer fuelsys activity slicing model.

open _system('slslicer fuelsys activity slicing')

3 Open Model Slicer and add the control logic Stateflow chart in the fuel rate controller
subsystem as a Model Slicer starting point.

4 Highlight the portions of the model that are upstream of the control logic Stateflow chart.

5 Simulate the model within a restricted simulation time window (maximum 20 seconds) to
highlight only the areas of the model upstream of the starting point and active during the time
window of interest.

8-29

8 Model Slicer

(1)=

throttle

Cz)—|

engine
speed

(2)=

Sensor correction and

Fault Redundancy

= Sensors

EGO

MAP

‘|

apEEdD ‘}

)

TR

fail_state

Ciorected

Airflow calculation

Fuel Calculation

I—b Failures

SEMNE_N
ast air flow

Failures

feedback comection
mode

~ t C)_m

N/

control logic

fuel rate controller

est. air flow

faedback comection

fued rate

Failures

mode

Constrain the Model Highlight to the Active Time Interval of a Stateflow State

—>{ 1)
fuel
rate

1 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.
2 Navigate to the control logic Stateflow chart in the fuel rate controller subsystem.

open_system('slslicer fuelsys activity slicing/fuel rate controller/control logic')
3 To constrain the model highlight to only those time intervals in which the Fueling_Mode >

Running > Low_Emissions > Warmup state is active, right-click the Warmup state and select

Model Slicer > Constrain to active time intervals for “Warmup”.

8-30

Highlight Active Time Intervals by Using Activity-Based Time Slicing

fail

entry: fail_state[02] = 1; J‘”

Warmup
entry: fail_state[D2] = 1;

|Ego = max_ago] |

[Ego = max_ego)/

Fail INC

press > max_press | press < min_prass)

fFail.INC

i

fail

enlry: fail_state[PRESS] = 1

-

e T e —
i 15 d
P P :
i Fat= max_thrat | thret < min_throt)/ i
i Fail INC i i [speed==0 & press < zera_thresh)/ [
| ‘h :
i T :
! fail] fnarmal fail :
i eniry: fail_state[THROT] = 1; L rﬂ“‘ff fail_stata[SFEED] = 0 entry: fail_stale{SPEED] = :
a I |
E [throt = min_throt & throt < max_throt) i i [spead = 0]/ :
: { Fail DEC il ;
e e Y 1| i

GRall

i ulti ;

i M : - ;

i _[Fone i =B J— oo o fThree |1 i E

| . -) :

] DEC DEC [

a \ |

‘Fueling Made (Fuel Disabled N

[speed = max_spaed | | @0l fusl_mode = DISABLED
Runni o 7y
riring | Overspeed
Low_Ermissians - ™ ‘Rich_Mixture N

entry: fuel_mode = LOW

MNarrmal

. [in{Fail.Cnaj]

[in(Fail.Onea]

[in{Fail. None))

] enlry: fual_mode = RICH

Ny

Warrnup

[in{G2.narmal)]

[Hir{F il ALt}

'anlar{FaII.Mulllj

[in{Speed._normal) & ...
spaad < (max_speaad - hys))

[ingFail_hukti)]
2

Model Slicer *

"““-———n:rl Shutdewr
Constrain to active time intervals for "Warmup™

Explore

Properties...

Help

.

Model Slicer is updated to highlight only those portions of the model that are active during the
time intervals in which the warmup state is active.

8-31

8 Model Slicer

8-32

o2 : [Pressure 3
] fail 11 H
] entry: fail_state[02] = 1; L . :
] {0 press = max_press | press < min_prass| '
| [warmup {f JFailINC .
i |entry: fail_state[02] = 1; [Ego < max_aga] / {0 . ¥ ;
] = {1 narmal fail :
1 . 1 antry: fail_state[PRESS] = 0 entry: fail_stale[PRESS] = 1 1
: [t=02_t_thresh] 16 E
] [Ego > max_ego]!] i i
E herrmal i i |[prass = min_prass & prass < max_press] | E
] entry: fail_state[02] = [; 18 H
] it ;
b, s N J
“Thrattle Y /Spesd
i [thrat= max_throt | thrat = min_thrat)f E :
: i : |speed==0 & press < zero_thresh)/
' normal i
: : ai =0 ’ HE
i entry: fail_state[THROT] = 0; fail . : . Tl i
: entry: fail_state[THROT] =1; |4 § antry: fail_state[SPEED] = 0 enlry: fail_state|SPEED)] =
' [thrat = min_thrat & throt < max_throt] i : [spaad = 0] {
1 I
Al e
: Mult
. INC
. =1 One 1
: 2
.f'IE:J;TIng-_-ﬂ-'Iua; ... e 8
' Fual_Disablad !
| [speed > max_speed | antry: fuel_mode = DISABLED i
| ‘Running 'I-' \ N i
! (Low_Emissions — Y 'Rich_Mixture |
| enlry: fuel_mode = LOW \H, antry: fuel_made = RICH i
| [
E [in{Fail Onea)] i
E Marmal [tirv Fail. Multi)] i
1 1 i
E [in{Fail.Mona)] :
: , enter{Fail. Mult) i
' 3 ‘II [in{Fail.Onia}]
| — |
] axit{Fail. Multi) 1
i [in{02 nomal)] Y, i
DA :

The Model Slice Manager is also updated to show the time interval in which the warmup state is

active:

Actual simulation time: 0.01 to 3.86 seconds : 1 active interval

The highlight shows a normal to fail transition in the Pressure state, showing that a pressure
failure occurred during the time interval in which the Warmup state was active.

Highlight Active Time Intervals by Using Activity-Based Time Slicing

Constrain the Model Highlight to the Intersection of the Active Time Intervals of a
Stateflow State and Transition

1 Clear any time interval constraints from the Model Slice Manager.
2 Constrain the model highlight to only those time intervals in which the O2 > fail state is active.

oz ™ iPressure
] i
] 1
] r E [press = max_press | press < min_prass)
i (warmup o : {1 f
1 antry: fail_stata[O2] = 1; [Ego < max_ego] / {0 .
] {0 normal fail :
] i 1 antry: fail_stale[PRESS] = enlry: Tail_stala[PRESS] = 1 [
] It = 02_t_thresh] Eno: " {1l
] [Ego > max_egqo]! 1}
i [r— i i |[press = min_prass & prass < max_prass) |
! entry: fail_state[02] = 0; {0
1 ! 1
| JL
T e —
15
] {5
1 thrat= max_thrat | trat < min_thret)f P a
i Fail.INC ‘ ' |spead==0 & prass < Zero_thresh]f
] narrmal v .
] antry: fail_state[THROT] = 0; {
! try: fail_state(T! 1 Tail 1l normal fail
: g LB L L ERE | antry: fail_stale[SPEED] = 0 entry: fail_state[SPEED] =
. | i
: [thrat > min_thrat & throt < max_thret] { | [speed = 0] (
1 ! Fail. DEC :]
:]
L
: Mult
] INC Thres
] None One 1 Twa |2——|:=- 1 Four
i] 1 = 2
DEC
i

{Fuel Disabled

[speed = max_speed | | etry: fuel_mode = DISABLED :
i Running E
] Crvarspead i
] i
i 2 :
i :
i [in{Spaad. normal) & ... i
i [tir(F il Multi)] speed < (max_speed - hys)] E
: 1y :
i antarFall Ml [ir(Fail Multi)] [
! S 2 [
| :
i :
] exit(Fail. Multi) i
] |
] i
5 i
: \, o s
. a

Model Slicer is updated to highlight only those portions of the model that are active during the
time intervals in which the 02 > fail state is active. The Model Slice Manager is also updated to
show the time interval in which the 02 > fail state is active:

8-33

8 Model Slicer

8-34

Actual simulation time: 4.83 to 20 seconds : 1 active interval

3 To constrain the highlighting to the time interval in which the 02 > fail state is active and the
normal to fail transition occurs for the Throttle chart, right-click the normal to fail
transition and add it as a constraint. Model Slicer is updated to highlight only those portions of
the model that are active during the intersection of the time intervals in which the 02 > fail
state is active and the normal to fail transition occurs for the Throttle chart.

/ " Pressure 3
i L s
1 10 F
] i i [press > max_press | press < min_prass] i
E Warmup)) . ; i i .
antry: fail_stata[02) = 1; [Ego < max_ega] / { I - i
' {1 narmal fail H
1 i 1 antry: fail_stale|PRESS] = eniry: fail_state[PRESS] = 1 [
' [t =02 _1_thresh] 1 H
! [Ego > max_egal/ i} ‘
1 rormal i] [press = min_prass & press < max_press] /| :
1 . 11 H
| enlry: fail_stata[02] = 0; it s
1 {0 i
'\ FAY .

e Y

iFueling_Mode
] A f'l:'ual_DIsahIaﬂ
[spead = max_speed | entry: fuel_mode = DISABLED
Rurmiry
0 Overspead
2
[in{Spead.normal) & ...
[tin{Fail_Multi)] speed < (max_speed - hys)]
1
[ir(F 2l Multi)]
anter] Fail. Multi) !
1 2

{ihrat= max_thrat | thret < min_throt]

Fail.INC |spaad==0 & prass < Zaro_thresh]f

narmal l;l‘]
antry: fail_state[THROT] = 0; Tail] ol -
] ai
[entry: '3||_S1.QI.E[TH R01‘] = . [ﬂﬂﬂ'y! fail_stata[SPEED] = 0] enlry: fa |I_5talu[$Pl:I:Llj =
[thrat = min_throt & throt < max_throt) i : [epaed > 0] f

ING
Nore BT 4 Two g Threa |4 Four
2 1 =

axit(Fail Multi)

The Model Slice Manager is also updated to show the time interval in which the 02 > fail state
is active and the normal to fail transition occurs for the Throttle chart:

Highlight Active Time Intervals by Using Activity-Based Time Slicing

Actual simulation time: 13.87 to 13.87 seconds : 1 active interval

Activity-Based Time Slicing Limitations and Considerations

For limitations and considerations of activity-based time slicing, see “Model Slicer Considerations and
Limitations” on page 8-43.

Stateflow State and Transition Activity

For more information on Stateflow state and transition activity, see “Chart Simulation Semantics”
(Stateflow), “Types of Chart Execution” (Stateflow), and “Syntax for States and Transitions”
(Stateflow).

See Also

More About

. “Using Model Slicer with Stateflow” on page 8-49
. “States” (Stateflow)
. “Transitions” (Stateflow)

8-35

8 Model Slicer

Simplify a Standalone Model by Inlining Content

8-36

You can reduce file dependencies by inlining model content when you generate the sliced model.
Inlining brings functional content into the sliced model and can eliminate model references, library
links, and variant structures that are often not needed for model refinement or debugging.

If you want to disable inlining for certain block types, open the Model Slice Manager and click the

options button \@, Select only the block types for which you want to inline content. For
information on block-specific inlining behavior, see “Inline Content Options” on page 8-42.

This example demonstrates inlining content of a model referenced by a Model block.
1 Add the path to the example and open the model

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))
open_system('sldvSliceEngineDynamicsExample"')
On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

In the model, right-click the MAP outport and select Model Slicer > Add as Starting Point.
The path is highlighted through the Model block.

Engine Gas Dynamics

3 fuel rate o2 out| —— 1
fuel . : o? ot
ThrottleAndManifold .
{1 ——— Engine Speed, N Mass Airflow Rate] - air flow ainffuel ratio | 3
engine s peed air/fuel ratic
Medng & Combustion
(" 2 —— Throttle Ang. MAP (bar) —— 2)
hr cttle angle MAP
Throttle & Manifold

Copyright 1980-2014 The MathWorks, Inc

4 Create a sliced model from the highlight. In the Model Slice Manager, click the Generate slice

button.

5 Enter a file name for the sliced model.

The sliced model contains the highlighted model content. The model reference is removed.

Simplify a Standalone Model by Inlining Content

double

fus!
fuel

double

engine spesd

doublz

throttle angle

Engine Gas Dynamics

Engine Spesd, N

Throttle Ang.

MAP [bar)

Throttle & Manifold

o ouple
o2 out
double o
-
airffuel ratio
double
B 2)

MAP

Click the arrow to look under the mask of the ThrottleAndManifold subsystem. The content from
the referenced model is inlined into the model in the masked subsystem.

double

double

-2 . double

Throttle Ang.

Limit to Positive

o

double

Throttle Angle, theta {deg)

Manifold Pressure, Pm (bar)

Atmospheric Presswre, Pa (bar)

Throttle Flow, mdot (g/s)

double

Atmos pheric
Pressure, Pa
{bar)

double

Throttle

R

Engine Speed, N

mdot Input {g/s)

M {radisec)

Manifold Pressure, Pm (bar)

double

double

Intake Manifold

>(2)

MAF (bar)

8-37

8 Model Slicer

Workflow for Dependency Analysis

In this section...

“Dependency Analysis Workflow” on page 8-38

“Dependency Analysis Objectives” on page 8-38

Model analysis includes determining dependencies of blocks, signals, and model components. For
example, to view blocks affecting a subsystem output, or trace a signal path through multiple
switches and logic. Determining dependencies can be a lengthy process, particularly for large or
complex models. Use Model Slicer as a simple way to understand functional dependencies in large or
complex models. You can also use Model Slicer to create simplified standalone models that are easier
to understand and analyze, yet retain their original context.

Dependency Analysis Workflow

The dependency analysis workflow identifies the area of interest in your model, generates a sliced
model, revises the sliced model, and incorporates those revisions in the main model.

!dentify ':I acllnl Incorporate
interest ode changes

Revised
Sliced Model

Highlighted
Model

Crek
sliced model Sliced Model

Dependency Analysis Objectives

« Simulation
« Debugging
» Model revision

To identify the area of interest in your model, determine objectives such as:

* What item or items are you analyzing? Analysis begins with at least one starting point.

* In what direction does the analysis propagate? The dependency analysis propagates upstream,
downstream, or bidirectionally from the starting points.

8-38

Workflow for Dependency Analysis

* What model items or paths do you want to exclude from analysis?

* What paths do you want to constrain? If your model has switches, you can constrain the switch
positions for analysis.

* Is your model a closed-loop system? If so, the highlighted portion of the model can include model
dependencies from the feedback loop. Consider excluding blocks from the feedback loop to refine
the highlighted portion of the model.

* Do you want to analyze static dependencies, or include simulation effects? Static analysis
considers model dependencies for possible simulation paths. Simulation-based analysis highlights
only paths active during simulation.

See Also

Related Examples

. “Highlight Functional Dependencies” on page 8-2

. “Refine Highlighted Model” on page 8-12

. “Create a Simplified Standalone Model” on page 8-28

8-39

8 Model Slicer

Configure Model Highlight and Sliced Models

8-40

In this section...

“Model Slice Manager” on page 8-40

“Model Slicer Options” on page 8-40

“Storage Options” on page 8-40

“Refresh Highlighting Automatically” on page 8-41
“Sliced Model Options” on page 8-41

“Trivial Subsystems” on page 8-41

“Inline Content Options” on page 8-42

Model Slice Manager

Set the properties of your model highlight and standalone sliced model using the Model Slice
Manager.

Click the toggle mode button ‘E/ to switch between model edit mode and model highlight mode.
If automatic highlighting is disabled in the slice settings, refresh the model highlight using the

refresh button & . Refresh the highlight after changing the slice configuration.

Model Slicer Options

You can customize the slice behavior using the options dialog box, which is accessed with the options

button @

Storage Options

Changes you make to a model slice configuration are saved automatically. You can store the slice
configuration in the model SLX file, or in an external SLMS file. Saving the configuration externally
can be useful if your SLX file is restricted by a change control system.

To set the storage location, click the options ‘@ button in the Model Slice Manager and set the
location in the Storage options pane.

Settings

Store in <model_name>.slx
Saves the model slice configuration in your model’s SLX file
Store in external file

Saves the model slice configuration in a separate SLMS file you specify by clicking the Save As
button. The model slice configuration filename is shown in File.

Configure Model Highlight and Sliced Models

Refresh Highlighting Automatically

Enables automatic refresh of a model highlight after changing the slice configuration.
Settings

on (default)
Model highlighting refreshes automatically.
off

Model highlighting must be refreshed manually. Click the refresh button L3 in the Model Slice
Manager to refresh the highlight.

Sliced Model Options

You can control what items are retained when you create a sliced model from a model highlight using
the options in the Sliced model options pane.

Option On (selected) Off (cleared)
Retain signal Signal observers, such as scopes, |Signal observers are not retained in the
observers displays, and test condition sliced model (default).
blocks, are retained in the sliced
model.
Retain root-level |Root-level ports are retained in |Root-level ports are not retained in the
inports and the sliced model (default). sliced model.
outports
Expand trivial Trivial subsystems are expanded |Trivial subsystems are not expanded in the
subsystems in the sliced model and the sliced model and the subsystem boundary
subsystem boundary is removed |is retained. See“Trivial Subsystems” on
(default). page 8-41.

Trivial Subsystems

If a subsystem has all of these characteristics, Model Slicer considers the subsystem trivial:

» If the subsystem is virtual, it contains three or fewer nonvirtual blocks.

+ If the subsystem is atomic, it contains one or fewer nonvirtual blocks.

* The subsystem has two or fewer inports.

* The subsystem has two or fewer outports.

* The active inport or outport blocks of the subsystem have default block parameters.
» The system does not contain Goto Tag Visibility blocks.

* In the Block Properties dialog box, the subsystem Priority is empty.

* The data type override parameter (if applicable) is set to use local settings.

Note If you generate a sliced model which does not remove contents of a particular subsystem, the
subsystem remains intact in the sliced model.

8-41

8 Model Slicer

8-42

Inline Content Options

When you create a sliced model from a highlight, model items can be inlined into the sliced model.
The Inline content options pane controls which model components are inlined in generating a

sliced model.

Model Component

Inlining on (selected)

Inlining off (cleared)

Libraries Model items inside sliced Model items inside sliced libraries are not
libraries are inlined in the sliced |inlined in the sliced model and library link
model and the library link is remains in place.
removed. (default)

Masked Model items inside sliced Model items inside sliced masked subsystems

subsystems masked subsystems are inlined |are not inlined in the sliced model and the
in the sliced model. (default) mask is retained.

The mask is retained in the
sliced model.

Model blocks Model items are inlined to the |Model items are not inlined to the sliced
sliced model from the model model from the model referenced by the
referenced by the Model block. |Model block. The Model block is retained.
The Model block is removed.

(default)

Note Model Slicer cannot inline
model blocks that are not in
Normal mode.

Variants Model items are inlined to the |Model items are not inlined to the sliced
sliced model from the active model from the variant. The variant is
variant. Variants are removed. |retained.

(default)

See Also

Related Examples

. “Highlight Functional Dependencies” on page 8-2

. “Refine Highlighted Model” on page 8-12
. “Simplify a Standalone Model by Inlining Content” on page 8-36

Model Slicer Considerations and Limitations

Model Slicer Considerations and Limitations

When you work with the Model Slicer, consider these behaviors and limitations:

In this section...

“Model Compilation” on page 8-43

“Model Highlighting and Model Editing” on page 8-43

“Standalone Sliced Model Generation” on page 8-43

“Sliced Model Considerations” on page 8-43

“Port Attribute Considerations” on page 8-44

“Simulation Time Window Considerations” on page 8-45
“Simulation-based Sliced Model Simplifications” on page 8-45

“Starting Points Not Supported” on page 8-46

“Model Slicer Support Limitations for Simulink Software Features” on page 8-46
“Model Slicer Support Limitations for Simulation Stepper” on page 8-46
“Model Slicer Support Limitations for Simulink Blocks” on page 8-46
“Model Slicer Support Limitations for Stateflow” on page 8-47

Model Compilation

When you open Model Slice Manager, the model is compiled. To avoid a compilation error, before you
open Model Slice Manager, make sure that the model is compilable.

Model Highlighting and Model Editing

When a slice highlight is active, you cannot edit the model. You can switch to model edit mode and
preserve the highlights. When you switch back to slice mode, the slice configuration is recomputed
and the highlight is updated.

Standalone Sliced Model Generation

Sliced model generation requires one or more starting points for highlighting your model. Sliced
model generation is not supported for:

* Forward-propagating (including bidirectional) dependencies
* Constraints

* Exclusion points

Sliced model generation requires a writable working folder in MATLAB.

Sliced Model Considerations

When you generate a sliced model from a model highlight, simplifying your model can change
simulation behavior or prevent the sliced model from compiling. For example:

8-43

8 Model Slicer

8-44

* Model simplification can change the sorted execution order in a sliced model compared to the
original model, which can affect the sliced model simulation behavior.

» Ifyou generate a sliced model containing a bus, but not the source signal of that bus, the sliced
model can contain unresolved bus elements.

* Ifyou generate a sliced model that inlines a subset of the contents of a masked block, make sure
that the subsystem contents resolve to the mask parameters. If the contents and mask do not
resolve, it is possible that the sliced model does not compile.

» If the source model uses a bus signal, ensure that the sliced model signals are initialized correctly.
Before you create the sliced model, consider including an explicit copy of the bus signal in the
source model. For example, you can include a Signal Conversion block with the Output option set
to Signal Copy.

» For solver step sizes set to auto, Simulink calculates the maximum time step in part based on the
blocks in the model. If the sliced model removes blocks that affect the time step determination,
the time step of the sliced model can differ from the source model. The time step difference can
cause simulation differences. Consider setting step sizes explicitly to the same values calculated in
the source model.

Port Attribute Considerations

You can use blocks that the Model Slicer removes during model simplification to determine compiled
attributes, such as inherited sample times, signal dimensions, and data types. The Model Slicer can
change sliced model port attributes during model simplification to resolve underspecified model port
attributes. If the Model Slicer cannot resolve these inconsistencies, you can resolve some model port
attribute inconsistencies by:

» Explicitly specifying attributes in the source model instead of relying on propagation rules.

* Including in the sliced model the blocks that are responsible for the attribute propagation in your
source model. Before you slice the model, add these blocks as additional starting points in the
source model highlighting.

* Not inlining the model blocks that are responsible for model port attributes into the sliced model.
For more information on model items that you can inline into the sliced model, see “Inline Content
Options” on page 8-42.

Because of the way Simulink handles model references, you cannot simultaneously compile two
models that both contain a model reference to the same model. When you generate a sliced model,
the Model Slicer enters the Slicer Locked (for attribute checking) mode if these conditions are
true:
* The parent model contains a referenced model.
* The highlighted portion of the parent model contains the referenced model.
» The referenced model is not inlined in the sliced model due to one of the following

* You choose not to inline model blocks in the Inline content options pane of the Model Slicer

options.

* The Model Slicer cannot inline the referenced model. For more information on model items
that Model Slicer cannot inline, see “Inline Content Options” on page 8-42.

To continue refining the highlighted portion of the parent model, you must first activate the slice

highlight mode ‘E/

Model Slicer Considerations and Limitations

Simulation Time Window Considerations

Depending on the step size of your model and the values that you enter for the start time and stop
time of the simulation time window, Model Slicer might alter the actual simulation start time and stop
time.

» If you enter a stop or start time that falls between time steps for your model solver, the Model
Slicer instead uses a stop or start time that matches the time step previous to the value that you
entered. For more information on step sizes in Simulink, see “Compare Solvers” (Simulink).

* The stop time for the simulation time window cannot be greater than the total simulation time.

Simulation-based Sliced Model Simplifications

When you slice a model by using a simulation time window, some blocks in the source model, such as
switch blocks, logical operator blocks, and others, can be replaced when creating the simplified
standalone model. For example, a switch block that always passes one input is removed, and the
active input is directly connected to the output destination. The unused input signal is also removed
from the standalone model.

This table describes the blocks that the Model Slicer can replace during model simplification.

Block in Source Model Simplification

Switch If only one input port is active, the switch is
replaced by a signal connecting the active input

Multiport Switch to the block output.

Enabled Subsystem or Model If the subsystem or model is always enabled,

remove the control input and convert to a
standard subsystem or model.

If the subsystem is never enabled, replace the
subsystem with a constant value defined by the
initial condition.

Triggered Subsystem or Model If the subsystem or model is always triggered,
remove the trigger input and convert to a
standard subsystem or model.

If the subsystem is never triggered, replace the
subsystem with a constant value defined by the
initial condition.

Enabled and Triggered Subsystem or Model If the subsystem is always executed, convert to a
standard subsystem or model

If the subsystem is never executed, replace the
subsystem with a constant value defined by the
initial condition.

Merge If only one input port is active, the merge is
replaced by a signal connecting the active input
to the block output.

8-45

8 Model Slicer

8-46

Block in Source Model Simplification

If If only one action subsystem is active, convert to
a standard subsystem or model and remove the If

If Action block.

Switch Case If only one action subsystem is active, convert to
a standard subsystem or model and remove the

Switch Case Action Switch Case block.

Logical operator Replace with constant when the block always
outputs true or always outputs false.
Replace the input signal with a constant if the
input signal is always true or always false.

Starting Points Not Supported

The Model Slicer does not support these model items as starting points:

» Virtual blocks, other than subsystem Inport and Outport blocks
* Output signals from virtual blocks that are not subsystems

Model Slicer Support Limitations for Simulink Software Features

The Model Slicer does not support these features:

* Arrays of buses

* Analysis of Simulink Test test harnesses

* Models that contain Simscape physical modeling blocks
* Models that contain algebraic loops

* Loading initial states from the source model for sliced model generation, such as data import/
export entries. Define initial states explicitly for the sliced model in the sliced model configuration
parameters.

* Component slicing of the subsystems and referenced models that have multiple rates.

* Component slicing of the “Conditional Models” (Simulink) and Conditionally Executed Subsystems
(Simulink).

Model Slicer Support Limitations for Simulation Stepper
When using Model Slicer with Simulation Stepper, the slice highlight after a Step Back may not be
limited to a single step. The highlight can be influenced by the Simulation Stepping Options >

Interval between stored back steps. For more information, see “Interval between stored back
steps” (Simulink).

Model Slicer Support Limitations for Simulink Blocks

The table lists the Model Slicer support limitations for Simulink Blocks.

Model Slicer Considerations and Limitations

Block Limitation

For Each Subsystem block The simulation impact is ignored for blocks in a For Each
subsystem. Therefore, applying a simulation time window returns
the same dependency analysis result as a dependency analysis that
does not use a simulation time window.

Function Caller block Model Slicer does not support Function Caller blocks.

MATLAB Function block Model Slicer assumes that any output depends on all inputs in the
upstream direction and any input affects all outputs in the
downstream direction.

Merge block If you generate a slice by using a simulation time window, Merge
blocks are removed in the standalone model if only a single path is
exercised.

Model block Model Slicer does not resolve data dependencies generated by

global data store memory in Model blocks with Simulation mode
set to Accelerator.

Model Slicer does not support function-call root-level Inport
blocks. For more information, see Export-Function Models
(Simulink).

Model Slicer does not analyze the contents within a reference to a
“Reference Protected Models from Third Parties” (Simulink). When
you slice a model that contains a protected model reference, the
Model Slicer includes the entire model reference in the sliced
model.

Resettable Subsystem block Model Slicer does not support Resettable Subsystem blocks.

S-function block Model Slicer assumes that any output depends on all inputs in the
upstream direction and any input affects all outputs in the
downstream direction.

Model Slicer does not determine dependencies that result from an
S-function block accessing model information dependent on a
simulation time window.

State Read block Model Slicer does not support State Read blocks.
State Write block Model Slicer does not support State Write blocks.

Model Slicer Support Limitations for Stateflow

* When you highlight models containing a Stateflow chart or state transition table, Model Slicer
assumes that any output from the Chart block or State Transition Table block depends on all
inputs to the Chart block or State Transition Table block.

* When you slice a model with a Stateflow chart or a state transition table, Model Slicer does not
simplify the chart or table. The chart or table is included in its entirety in the sliced model.

* Ifyou do not “Define a Simulation Time Window” on page 8-12 when you highlight functional
dependencies in a Stateflow chart or state transition table, Model Slicer assumes that all elements
of the chart or table are active. Model Slicer highlights the entire contents of such charts and
tables.

8-47

8 Model Slicer

8-48

When you highlight functional dependencies in a Stateflow chart or state transition table for a
defined simulation time window, Model Slicer does not highlight only the states and transitions
that affect the selected starting point. Instead, the Model Slicer highlights elements that are
active in the time window that you specify.

The Model Slicer does not determine dependencies between Stateflow graphical functions and
function calls in other Stateflow charts.

Graphical functions and their contents that were not active during the selected time window can
potentially remain highlighted in some cases.

Entry into states that are preempted due to events can potentially remain highlighted in some
cases. For example, after a parent state is entered, an event action can exit the state and preempt
entry into the child state. In such a case, the Model Slicer highlights the entry into the child state.

The Model Slicer does not support:

* Embedded MATLAB Function blocks

* Simulink functions

* Truth Table blocks

* Machine-parented data or events in Stateflow.

Activity-Based Time Slicing Considerations for Stateflow

As measured by the 'Executed Substate' decision coverage, state activity refers to these during/exit
actions:

Entry into a state does not constitute activity.

The active time interval for a state or transition includes the moment in which the selected state
exits and the subsequent state is entered.

Indirect exits from a state or transition do not constitute activity. For example, if a state C exits
because its parent state P exits, state C is not considered active.

For more information on decision coverage for Stateflow charts, see “Decision Coverage for Stateflow
Charts” (Simulink Coverage).

When you “Highlight Active Time Intervals by Using Activity-Based Time Slicing” on page 8-29, you
can select states and transitions only as activity constraints. You cannot select these Stateflow objects
as constraints:

Parallel states

Transitions without conditions, such as unlabeled transitions which do not receive decision
coverage

States or transitions within library-linked charts

XOR states without siblings. For example, if a state P has only one child state C, you cannot select
state C as an activity constraints because state P does not receive decision coverage for the
executed substate

See Also
“Algebraic Loop Concepts” (Simulink) | “Solver Pane” (Simulink)

Using Model Slicer with Stateflow

Using Model Slicer with Stateflow

In this section...

“Model Slicer Highlighting Behavior for Stateflow Elements” on page 8-49
“Using Model Slicer with Stateflow State Transition Tables” on page 8-49

“Support Limitations for Using Model Slicer with Stateflow” on page 8-49

You can use Model Slicer highlighting to visually verify the logic in your Stateflow charts or tables.
After you “Define a Simulation Time Window” on page 8-12, you use Model Slicer to highlight and
slice Stateflow elements that are active within the selected time window.

Note If you do not “Define a Simulation Time Window” on page 8-12 when you highlight functional
dependencies in a Stateflow chart or table, Model Slicer assumes that all elements of the chart or
table are active. Model Slicer highlights the entire contents of such charts and tables.

In this section...
“Model Slicer Highlighting Behavior for Stateflow Elements” on page 8-49
“Using Model Slicer with Stateflow State Transition Tables” on page 8-49

“Support Limitations for Using Model Slicer with Stateflow” on page 8-49

Model Slicer Highlighting Behavior for Stateflow Elements

Model Slicer highlights a Stateflow element if it was executed in the specified time window. Some
examples include:

* A chart, if it is activated in the specified a time window.

» A state, if its entry, exit, or during actions are executed in the specified a time window.

* A parent state, if its child state is highlighted in the specified a time window.

* A transition, if it is taken in the specified time window, such as inner, outer, and default. If the
conditions of a transition are evaluated, but the transition is not taken, Model Slicer does not
highlight the transition.

Using Model Slicer with Stateflow State Transition Tables
Model Slicer does not directly highlight the contents of Stateflow state transition tables. To view
highlighted functional dependencies in a state transition table, you must view the auto-generated

diagram for the state transition table. For instructions on how to view the auto-generated diagram for
the state transition table, see “Generate Diagrams from State Transition Tables” (Stateflow).

Support Limitations for Using Model Slicer with Stateflow

For support limitations when you use Model Slicer with Stateflow, see “Model Slicer Support
Limitations for Stateflow” on page 8-47.

8-49

8 Model Slicer

See Also

More About

. “Highlight Functional Dependencies” on page 8-2
. “Refine Highlighted Model” on page 8-12
. “Chart Simulation Semantics” (Stateflow)

8-50

Isolating Dependencies of an Actuator Subsystem

Isolating Dependencies of an Actuator Subsystem

This example demonstrates highlighting model items that a subsystem depends on. It also
demonstrates generating a standalone model slice from the model highlight.

In this section...

“Choose Starting Points and Direction” on page 8-51
“View Precedents and Generate Model Slice” on page 8-52

Choose Starting Points and Direction

1 Open the f14 example model.

f14
2 On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

Muodel Slice Manager: f14 b

b Slice configuration list 3; @ &
Name: |untit|ed | J
Description:

Signal propagation: #= upstream ~

Starting Points [Add all outports
Right-click model iftems to select.

Simulation time window
Run simulation ®

Use existing simulation data 3

Export to Web Generate Slice

Simulation time window enabled

3 In the Model Slice Manager, click the arrow to expand the Slice configuration list list. Set the
slice properties:

* Name: Actuator slice

To the right of Name, click the colored square to set the highlight color. Choose magenta !
from the palette.

* Signal Propagation: upstream.

8-51

8 Model Slicer

4 Add the Actuator Model subsystem as a starting point. In the model, right-click the Actuator
Model subsystem and select Model Slicer > Add as Starting Point.

Model Slice Manager: sldvSliceClimateControlExample x
©
¥ Slice configuration list 3; @ L)
Name Slice % B
* OutlSlice 57% %
Name: |Out1Slice |
Description:

Signal propagation: #= upstream -

Starting Points [clear al
B T outt

» Simulation time window
» Refine Dead Logic

Export to Web | Generate Slice

Slicer Active

View Precedents and Generate Model Slice

1 The model highlights the upstream dependencies of the Actuator Model subsystem.

8-52

Isolating Dependencies of an Actuator Subsystem

Trace the following dependency path. Aircraft Dynamics Model is highlighted via the Pitch
Rate g signal, which is an input to Controller, the output of which feeds Actuator Model.

2 Generate a standalone model containing the highlighted model items:

a In the Model Slice Manager, click Generate slice.

b In the Select File to Write dialog box, select the save location and enter
actuator slice model.

¢ Click Save.
3 The sliced model contains the highlighted model items.

8-53

8 Model Slicer

ooono
oo

8-54

Stick Input {in)
| alpha (rad) Elevator Command {deg) He = | Elewator Deflection d (deg)
Tas+l W
—=| g (rad/sec) ‘ertical Velocaty w (fi'sec)
Actuator
Controller Model
| T ‘festical Gust wizust (ft'sec)
Piich Rat di's a
wiEust ate q (radisec) —|_|
Wig | Mw Rotary Gust gGust (radisec) —
qG'JE[
m -
| Aircraft
Dryden Wind \ Dynamics
Gust Models B Mg Model

F-14 Flight Conirol

Copyright 1980-2014 The MathWorks, Inc.

To remove highlighting from the model, close the Model Slice Manager.

Isolate Model Components for Functional Testing

Isolate Model Components for Functional Testing

You can create a standalone model for the model designed using “Design Model Architecture”
(Simulink). The model slice isolates the model components and relevant signals for debugging and
refinement.

Isolate Subsystems for Functional Testing

To debug and refine a subsystem of your model, create a standalone model. The standalone model
isolates the subsystem and relevant signals. You can observe the subsystem behavior without
simulating the entire source model.

Note You cannot slice virtual subsystems. To isolate a virtual subsystem, first convert it to an atomic
subsystem.

Isolate a Subsystem with Simulation-Based Inputs

To observe the simulation behavior of a subsystem, include logged signal inputs in the standalone
model. When you configure the model slice, specify a simulation time window. For large models,
observing subsystem behavior in a separate model can save time compared to compiling and running
the entire source model.

This example shows how to include simulation effects for the Controller subsystem of a cruise control
system.

enablz > P znable
enable enable
— throttie
braks > ¥ brake_pressure throttie
brake_pressure throttle P throttiz
/\ sat - P ==t
set
inc -+ p inc v ehicle_spesd
| inc
dec >] d=c
_— dec
target — braks
driver_throt > driver_throt GErget
|| driver_throt farget
TestCases SizeType
spesd
Centroller Flant
speed 1 J_L]_ vehicle_speed
z

=lnit= 0= ZeroCrderHald

1 To open the Model Slice Manager, on the Apps tab, under Model Verification, Validation, and
Test gallery, click Model Slicer.

8-55

8 Model Slicer

8-56

To select the starting point for dependency analysis, right-click a block, signal, or a port, and
select Model Slicer > Add as Starting point.

To isolate the subsystem in the sliced model, right-click the subsystem, and select Model Slicer
> Slice component.

In the example model, selecting Slice component for the Controller subsystem limits the
dependency analysis to the path between the starting point (the throttle outport) and the
Controller subsystem.

= |=nzhle

(D
throtte
~— " lbrake_pressurs throtte

throttle
E—
——¥inc
——M|dec
target » 2)
—— | driver_throt gt -

|—l spead
Controller

To specify the simulation time window:

a In the Model Slice Manager, select Simulation time window.

Click the run simulation button .
¢ Enter the simulation stop time, and click OK.

Record simulation time window: ex_model_slicer_cruise.., =

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable
highlight mode now.

Stop time: |45 |

Log inputs and outputs of the starting points

Save As |"LEIdv\exampleﬂmodelﬁIicer\ex_mcdel_l Change

cance

Isolate Model Components for Functional Testing

The Model slicer analyzes the model dependencies for the simulation interval.

5 To extract the subsystem and logged signals, click Generate slice. Enter a file name for the
sliced model.

Based on the dependency analysis, a Signal Builder block supplies the signal inputs to the
subsystem.

In the sliced model shown, the sliced model Signal Builder block contains one test case
representing the signal inputs to the Controller subsystem for simulation time 0-45 seconds.

SizeType

Test Case 1 enahile

==t

inG
Y ol (T
o= throttle

diriwer_throt J| driver_throt
sp=ad speed
Inputs Test Unit {copied from Controller)

Isolate Referenced Model for Functional Testing

To functionally test a referenced model, you can create a slice of a referenced model treating it as an
open-loop model. You can isolate the simplified open-loop referenced model with the inputs generated
by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel control
system for functional testing. To create a simplified open-loop referenced model for debugging and
refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel rate control.

open_system('sldvSlicerdemo fuelsys');

8-57

8 Model Slicer

Fault-Tolerant Fuel Control System

engine_speed

Engine Speed

8-58

throttle —
»
command " —q|engine speed 02 _aut
thrattle_sw -t} » \rad's N yradrs))
_ throttle
Throttle Angle —
Fault Switch Throtile_Angle_Selecior [bar)
o= throttle angle MAP F—
=_— '|{deg) (bar)
speed_sw ! » fuel_rate_contr
_ ! spaed (1)
Engine Speed — 'g's" fuel airffuel ratio
L — 195 1] ror
Fault Switch Engine_Speed_Selector iais) {o's) n
Convert g cansorsfuel_rate f—{ Convert
g} fuel
N g's)
ego_sw » I > To Plant L
g0
EGD Fault Switch 4 air_fuel_ratic
fuel_rate_control -

[=h

02 _Voltage_Selector fuel

mag

Map_sw

EH
0

MAP Fault Switch

MAP_Selector

To Controller

Copyright 19%0-2017 The MathWoarks, Inc.

Step 2: Slice the Referenced Model

To analyze the fuel rate control referenced model, you slice it to create a standalone open-loop
model. To open the Model Slice Manager, select Apps > Model Verification, Validation, and Test

> Model Slicer, or right-click the fuel rate control model and select Model Slicer > Slice
component. When you open the Model Slice Manager, the Model Slicer compiles the model. You then
configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo fuelsys model is Accelerator mode. When
you slice the referenced model, the software configures the simulation mode to Normal mode and
sets it back to its original simulation mode while exiting the Model Slicer.

Step 3: Select Starting Point

Open the fuel rate control model, right-click the fuel- rate port, and select Model Slicer >
Add as starting point. The Model Slicer highlights the upstream constructs that affect the
fuel rate.

Isolate Model Components for Functional Testing

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.
b. Click Run simulation.
c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the inputs of
the close-loop sldvSlicerdemo fuelsys model.

8-59

8 Model Slicer

8-60

b Slice configuration list

Maodel Slice Manager: sldvSlicerderno_fuelsys

Name: |untitled

Description:

Slice component
L fuel rate control

Starting Points [clear all
E LPfuel rate

¥ Simulation time window

Run simulation

b Refine Dead Logic

Slicer Active

Signal propagation: #= |upstream

-

Record simulation time window: sldvSlicerdemo_fuelsys

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable highlight

maode now.

Stop time: |20 |
Log inputs and outputs of the starting points

Save As }mu_fuelsvs‘usldvslicerdemn_fueIsya.slslicex| | Change

| OK |I Cancel |

Use existing simulation data

Export to Web Generate Slice

For the sliced model, in the Signal Builder window, one test case is displayed that represents the
signals input to the referenced model for simulation time 0-20 seconds.

Isolate Model Components for Functional Testing

Test Case 1

/‘x
L

Bens0re. throtte

EENE0IE. el

SENEOrs.ego

EENE0rE. Map

Size-Type
=)
radis)
—
{l.l':. IO
—
(bar)
——

Inputs

SENsOrs

fuel_rate
{as}

Test Unit

fuel_rate

8-61

8 Model Slicer

"4 Signal Builder (sldvSlicerdemo_fuelsys_slice10/Inputs) - O X
File Edit Group Signal Axes Help o
FHE PRE oo | — I TFREE o0 ow | R E
Active Group: | | Test Caze 1 v | g = | m
100 -
sensors.throttle
50
0
301
sensors.speed
300
299 1 1 1 [1 1 1 1 [|
1 _
SEensors.ego
0.5
1= i 1 T T | | | 1 1
1F
sensors.map
0.5
1 1 1 1 | | 1 1]
0 2 4 6 8

= sensors.speed
Name: sensors. throttie I': ; = sensors.ego

B sensors.map

Index: 1 hd
| L
Click to select, Shift+click to add] sensors.throttie (#1) [YMin YMax]
See Also
“Model Slicer Considerations and Limitations” on page 8-43 | “Highlight Functional Dependencies”
on page 8-2

8-62

Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results

Refine Highlighted Model by Using Existing .slslicex or Dead
Logic Results

When you run simulation or refine dead logic, Model Slicer saves your simulation results at the
default location <current folder>\modelslicer\<model name>\<model name>.slslicex.
For large or complex models, the simulation time can be lengthy. To refine the highlighted slice, you
can use the existing Model Slicer simulation data or dead logic results.

If you want to highlight functional dependencies in the model again at another time, you can use the
existing . slslicex simulation time window data without needing to resimulate the model. Model
Slicer then uses the existing simulation data to highlight the model.

Open the Simulink model.

2 To open the Model Slice Manager, On the Apps tab, under Model Verification, Validation, and
Test gallery, click Model Slicer.

3 Select Simulation time window.

Click Use existing simulation data ‘E’
5 Navigate to the existing .s1lslicex data and click Open.

To refine the dead logic for dependency analysis, you can import the existing Simulink Design Verifier
data file or use the existing .slslicex dead logic results. For more information see, “Dead Logic
Detection” (Simulink Design Verifier) and “Simulink Design Verifier Data Files” (Simulink Design
Verifier).

In Model Slice Manager, select Refine Dead Logic and click Get Dead Logic Data.

To import the Simulink Design Verifier data file, click Browse for SLDV data file ‘E’

To load the existing dead logic results, click Browse for existing dead logic results‘_,E .
3 Navigate to the existing data and click Open.

8-63

8 Model Slicer

Madel Slice Manager: sldvdermo_cruise_control ot

b Slice configuration list =

Name: |untitled _I
Description: Refine Dead Logic x
Generate results
Run analysis
Signal propagation: 4= |upstream -
gnal propag P Analysis time: | 300 | |®|
Starting Points [clear all
= I throt Import SLDV data
Browse for SLDV data file
Save As I_cruise_cc:ntrol.slslicex| | Change |
Load results
Browse for existing dead logic results

* Simulation time window

Run simulation
Use existing simulation data

¥ Refine Dead Logic
Get Dead Logic Data

Export to Web Generate Slice
Slicer Active

See Also

More About

. “Highlight Functional Dependencies” on page 8-2

. “Configure Model Highlight and Sliced Models” on page 8-40
. “Refine Dead Logic for Dependency Analysis” on page 8-22

8-64

Simplification of Variant Systems

Simplification of Variant Systems

In this section...

“Use the Variant Reducer to Simplify Variant Systems” on page 8-65

“Use Model Slicer to Simplify Variant Systems” on page 8-65

If your model contains “Variant Systems” (Simulink), you can reduce the model to a simplified,
standalone model containing only selected variant configurations.

Use the Variant Reducer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can reduce the model from the
Variant Manager:

Open a model containing at least one valid variant configuration.

N =

Select View >> Variant Manager, or right-click a variant system and select Variant >> Open
in Variant Manager.

Click Reduce model....
Select one or more variant configurations.
Set the Output directory.

S U AW

Click Reduce to create a simplified, standalone model containing only the selected variant
configurations.

The Variant Reducer creates a simplified, standalone model in the output directory you specified
containing only the variant configurations you selected. For more information, see “Reduce Models
Containing Variant Blocks” (Simulink).

Use Model Slicer to Simplify Variant Systems

After you Add and Validate Variant Configurations (Simulink), you can use Model Slicer to create a
simplified, standalone model containing only the active variant configuration. When you “Highlight
Functional Dependencies” on page 8-2 in a model containing variant systems, only active variant
choices are highlighted. When you “Create a Simplified Standalone Model” on page 8-28 from a
model highlight that includes variant systems, Model Slicer removes the variant systems and replaces
them with the active variant configurations.

For instructions on how to change the active variant configuration and how to set default variant
choices, see “Working with Variant Choices” (Simulink).

See Also

More About

. “Create a Simple Variant Model” (Simulink)

. “Define, Configure, and Activate Variants” (Simulink)

. “Introduction to Variant Controls” (Simulink)

. “Reduce Models Containing Variant Blocks” (Simulink)

8-65

8 Model Slicer

Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer

In this example, you evaluate a Simulink® model, detect unexpected behavior, and use Model Slicer
to programmatically isolate and resolve the unexpected behavior. When you plan to reuse your API
commands and extend their use to other models, a programmatic approach is useful.

Prerequisites

Be familiar with the behavior and purpose of Model Slicer and the functionality of the Model Slicer
API. “Highlight Functional Dependencies” on page 8-2 outlines how to use Model Slicer user
interface to explore models. The slslicer, slsliceroptions, and slslicertrace function
reference pages contain the Model Slicer API command help.

Find the Area of the Model Responsible for Unexpected Behavior

The sldvSliceCruiseControlHarness test harness model contains a cruise controller subsystem
sldvSliceCruiseContro*l and a block, *TestCases, containing a test case for this subsystem. You
first simulate the model to execute the test case. You then evaluate the behavior of the model to find
and isolate areas of the model responsible for unexpected behavior:

1. Open the sldvSliceCruiseControlHarness test harness for the cruise control model.

open_system('sldvSliceCruiseControlHarness")

Size-Type

Shortinc

sldvSliceCruiseControl

enbl b anbl
cnd b——————

—————»
reqDrv dviver_raquast

dviver_request

cnel

setb— sat
——————»
resume ———— resume status act_status
- act_status
incp——f inc
dec p—«+ dec operation_mode —}—l—b 3
> - operation_maode

brakeF » brakaP operation_mode

kay f—————

gear——
throtDry b————

vehSphH—— =

key

targetspk—1———»(7)

targel_speed
gear target_spead

Yy

throtCC f————(:]
vahSp r throttle

Scope

throitle

mode_exp

bladel

TestCases

h
Yy

int3Z2 e convert

— > \}
expected_mode varify O

dici dic Assertion

8-66

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

4 = [=] 3

File Tools View Simulation Help u

- 4P| - A& FH-

Ready Sample based

8-67

8 Model Slicer

—

| Signal Builder (sleheShceCruiseControlHarness TestCases) | = ” =l ” =3 |
File Edit Group Signal Axes Help N
B E $EBR| oo | — TJL | TREE o now W g Rl

Active Group: | | Shortinc w | |G| - |

Hame: enhl B =et

Index: 1 ~

ak enbl (#1) [¥Min Yhax]

Note: The Assertion block is set to Stop simulation when assertion fails when the actual
operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.

2. In the TestCases Signal Builder click the Run all button to run all of the included test cases. You
receive an error during the ResumeWO test case. The Assertion block halted simulation at 27
seconds, because the actual operation mode was not the same as the expected operation mode. Click
OK to close this error message.

3. In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear Enable
assertion, and click OK.

set param('sldvSliceCruiseControlHarness/Assertion', 'Enabled’, 'off")

8-68

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

4. Set the Active Group of the TestCases Signal Builder block to the test case containing the error
and run the simulation again.

signalbuilder('sldvSliceCruiseControlHarness/TestCases', 'ACTIVEGROUP', 12)
sim('sldvSliceCruiseControlHarness"')

o

File Tools View Simulation Help
@- O P® | == Q- LC-F&-

operation_maode

Ready Sample bazed | T=45.000

8-69

8 Model Slicer

File Edit Group Signal Axes Help

| Signal Builder (sleheShiceCruiseCantrolHarness TestCases) *

FE $BRE oo =T & RC

Ponom | g Rl

Active Group: | Rezymeo

Hame: enkl

Index: 1 ~

Click to select signal

enbl (#1) [¥Min Yhax]

The Scope block in the model contains three signals:

* operation_mode - displays the actual operation mode of the subsystem.

* expected mode - displays the expected operation mode of the subsystem that the test case

provides.

* verify - displays a Boolean value comparing the operation mode and the expected mode.

The scope shows a disparity between the expected operation mode and the actual operation mode
beginning at time 27. Now that you know the outport displaying the unexpected behavior and the
time window containing the unexpected behavior, use Model Slicer to isolate and analyze the

unexpected behavior.

8-70

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Isolate the Area of the Model Responsible for Unexpected Behavior

1. Create a Model Slicer configuration object for the model using slslicer. The Command Window
displays the slice properties for this Model Slicer configuration.

obj = slslicer('sldvSliceCruiseControlHarness")

obj =
SLSlicer with properties:

Configuration: [1x1 SLSlicerAPI.SLSlicerConfig]
ActiveConfig: 1
DisplayedConfig: T[]
StorageOptions: [1x1 struct]
AnalysisOptions: [1x1 struct]
SliceOptions: [1x1 struct]
InlineOptions: [1x1 struct]

Contents of active configuration:
Name: ‘'untitled'
Description: "'
Color: [0 1 1]
SignalPropagation: 'upstream'
StartingPoint: [1x0 struct]
ExclusionPoint: [1x0 struct]
Constraint: [1x0 struct]
SliceComponent: [1x0 struct]
UseTimeWindow: 0
CoverageFile: '
UseDeadlLogic: 0
DeadLogicFile: '

2. Activate the slice highlighting mode of Model Slicer to compile the model and prepare it for
dependency analysis.

activate(obj)

8-71

8 Model Slicer

(4] o || =[] ER
File Tools View Simulation Help u
o - () | 5 - & - E"j - ﬁF @ -

operation_maode

Running Sample based T=0.000

8-72

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

| Signal Builder (sleheShiceCruiseCantrolHarness TestCases) * o || =

g

File Edit Group Signal Axes Help N
@ H fREB| oo | — LSRG 0w g el B

Active Group: | |Rezymenio G- - |

Click to select signal enbl (#17 [vhiin vhiax]

3. Add the operation_mode outport block as a starting point and highlight it.

addStartingPoint(obj, 'sldvSliceCruiseControlHarness/operation mode')
highlight(obj)

The area of the model upstream of the starting point and active during simulation is highlighted.

4. Simulate the model within a restricted simulation time window (maximum 30 seconds) to highlight
only the area of the model upstream of the starting point and active during the time window of
interest.

simulate(obj,0,30)

8-73

8 Model Slicer

(4] o || =[] ER
File Tools View Simulation Help u
o - () | 5 - & - E"j - ﬁF @ -

operation_maode

Running Sample based Offset=0 |T=0.000

8-74

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

| Signal Builder (sleheShiceCruiseCantrolHarness TestCases) * o |[= =
File Edit Group Signal Axes Help N
wH| L BB oo | — I JL | TEEE |y 0 om | 4P| B

Active Group: | |Rezymenio G- - |

Click to select signal enbl (#17 [vhiin vhiax]

Only the portion of the model upstream of the starting point and active during the simulation time
window is highlighted.

5. You can further narrow the simulation time window by changing the start time to 20 seconds.
setTimeWindow(obj,20,30)

6. Create a sliced model sldvSliceCruiseControlHarness_sliced containing only the area of
interest.

slicedModel = slice(obj, 'sldvSliceCruiseControlHarness sliced')
open_system('sldvSliceCruiseControlHarness sliced')

slicedModel

8-75

8 Model Slicer

8-76

'sldvSliceCruiseControlHarness sliced'

Size-Type

Shortinc

enk

cnc
sat

resUme

inc
dec
brakeP

Kay

gear
throtDire

vehSp

mode_exp

————®
=
==
EEEE—
==
=
==
=
==
=
==
=

TestCases

[=] b

resuma

operation_mode

b D

dviver_request

e

act_status

- 0
operation_maode -

operation_mode

> @D

target_spead

> (D

throitle

badel

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

(4] o || =[] ER
File Tools View Simulation Help u
o - () | 5 - & - E"j - ﬁF @ -

operation_maode

ted mode

Running Sample based Offset=0 |T=0.000

8-77

8 Model Slicer

Click to select signal

| Signal Builder (sldvSliceCruiseCantrolHarness, TestCases) E'@
File Edit Group Signal Axes Help N
SH| 5 BB 0|~ 0B FREE| > 08| 4
Active Group: | |Rezymeinio G- - |
pY = . | 1 i - .
enbl
'E?I_cncl ' ' ' ' ' '
.E;F_ I I i 1 i i i
set
E?L | | | 1 | 1 j
resume
'E?I_dec ' ' ' ' ' '
'lf?l_brakeF‘ ' ' ' ' ' '
A= | | | | | |
key
BE_ — | | | | | |
gear
E_ - I I I 1 i i i
8 throtDry
¢ I I i C i
vehSp
AE— f f 1 L __r i
0 mode exp s 10 15 20 25 30

enbl (#1) [¥Min Yhax]

8-78

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

—

| Signal Builder {sleheShceCruiseCantrolHarness_sliced/ TestCases) | = ” =l ” =3 |
File Edit Group Signal Axes Help N
B E $EBR| oo | — TJL | TREE o now W g Rl

Active Group: | | Shortinc w | |G| - |

Hame: enhl B =et

Index: 1 ~

ak enbl (#1) [¥Min Yhax]

The sliced model sldvSliceCruiseControlHarness_sliced now contains a simplified version of the
source model sldvSliceCruiseControlHarness. The simplified standalone model contains only those
parts of the model that are upstream of the specified starting point and active during the time
window of interest.

Investigate the Sliced Model and Debug the Source Model

You can now debug the unexpected behavior in the simplified standalone model and then apply
changes to the source model.

1. To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)

8-79

8 Model Slicer

(4] o || =[] ER
File Tools View Simulation Help u
- AOP® - a-C-F&-

operation_maode

Ready Sample based Offset=0 |T=0.000

8-80

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

E Signal Builder (sleheShiceCruiseCantrolHarness TestCases) * E'@

File Edit Group Signal Axes Help N
SH| BB oo |—TL[ETFREE > 0o 2k D
Active Group: | |Rezymenio v | |G| | .||

dec
L= : : : : : !
: brakeP
A= | | | | | |
key
= | | | | | |
gear
2HE - | | | | i i .
throtDr
E__ } I I I L i
vehsSp
EL L L 1 —
0 mode exp s 10 15 20 25 30
Hame: enhl B =et
Index: 1 ~ gir:csume
o WP | e
Click to select signal enbl (#17 [vhiin vhiax]

2. Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness sliced/Model/CruiseControlMode/opMode/resumeCondition,

8-81

8 Model Slicer

ophMode.Disable l—b
L1} >

mode_prev

ophMode. Enable l—b

-
false T
. true T —l-{ (1)
yesno
AND qi > F

h 4
=

true

!

Init=false

The AND Logical Operator block in this subsystem has a truncated true constant attached to its
second input port. This true constant indicates that the second input port is always true during the
restricted time window for this sliced model, causing the cruise control system not to enter the "has
canceled" state.

3. Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.

h = slslicertrace('SOURCE',...
'sldvSliceCruiseControlHarness sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCancele
hilite system(h)

h:

670.0006

8-82

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

ophMode.Disable l—b
L1} >

mode_prev

ophMode. Enable l—b

'
false T
. true T —l-{ (1)
yesno
ARD h-.l »F
| opMode.Disable |—> il »—
= -
Ly 7! > j
OR P F
Init=ocpMode.D 5| =
opMode.Enable l—b
o T
z! k
Init=false

The OR Logical Operator block in this subsystem is always true in the current configuration.
Changing the OR Logical Operator block to an AND Logical Operator block rectifies this error.

4. Before making edits, create new copies of the cruise control model and the test harness model.

save _system('sldvSliceCruiseControl', 'sldvSliceCruiseControl fixed')
save system('sldvSliceCruiseControlHarness', 'sldvSliceCruiseControlHarness fixed')

8-83

8 Model Slicer

sldvSliceCruiseControl

reqDiry

status

operation_mode

targetSp

throtCC

act_statue

dviver_request

dviver_request

act_status

targel speed

blodel

D:-E';inn_mcde

operation_mode

target_speed
» (]
.
[— L
throtile @ Scope
throttle

Yvw
|
|
r

expacted_mode

varify /@

Assartion

Size-Type
FesumsWo
enb enbl
cne cncl
sat sat
TEGUMme resume
inc inc
dec dec
brakeP brakeP
kay ke
gear gear
throtDire
vehSp vehSp
mode_exp
TestCases
B INt3Z2 | convert
dtci dic
ophode.Disable l—l-
L1} P
mode_prev
opMode Enable l—b
'
| ophMode. Disable l—b %
L p 71 »
Init=ocpMaode. Disr™
. |opMDde.EnahIe l—b 4
7

8-84

false T
n true T —l-{ »(1)
YESNo
AND qi s
' 1
OR M F
z1 ka
nit=false

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

E Signal Builder (sleheShiceCruiseCantrolHarness_fixed TestCases) E'@

File Edit Group Signal Axes Help N
SH| BB oo |—TL[ETFREE > 0o 2k D
Active Group: | |Rezymenio v | |G| | .||

dec
L= : : : : : !
: brakeP
A= | | | | | |
key
= | | | | | |
gear
2HE - | | | | i i .
throtDr
E__ } I I I L i
vehSp
SL i i I L
o mode_exp 5 10 15 20 25 30
Hame: enhl B =et
B resume
Index: 1 ~ E':": 9
Click to select signal enbl (#17 [vhiin vhiax]

5. Update the model reference in the test harness to refer to the newly saved model.

set param('sldvSliceCruiseControlHarness fixed/Model', 'ModelNameDialog', 'sldvSliceCruiseControl
6. Use the block path of the erroneous Logical Operator block to fix the error.

set param('sldvSliceCruiseControl fixed/CruiseControlMode/opMode/resumeCondition/hasCanceled/Log:
7. Simulate the test harness for 45 seconds with the fixed model to confirm the corrected behavior.

sim('sldvSliceCruiseControlHarness fixed')

8-85

8 Model Slicer

[o || =[] ER
File Tools View Simulation Help u
- AOP® - a-C-F&-

operation_maode

Ready Sample based Offset=0 |T=45.000

8-86

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

| Signal Builder (sleheShceCruiseCantrolHarness_fixed TestCases) E'@

File Edit Group Signal

FEH B oo | — T Jd TSR]y w2 P

Active Group: | Rezymeio

Hame: enkl

Index: 1 ~

Click to select signal

enbl (#1) [¥Min Yhax]

The scope now shows that the expected operation mode is the same as the actual operation mode.

Clean Up

To complete the demo, save and close all models and remove the Model Slicer configuration object.

save_system('sldvSliceCruiseControl fixed")
save_system('sldvSliceCruiseControlHarness fixed")
close system('sldvSliceCruiseControl fixed')

close system('sldvSliceCruiseControlHarness fixed')
close system('sldvSliceCruiseControlHarness sliced')

clear obj

8-87

8 Model Slicer

Programmatically Resolve Unexpected Behavior in a Model
with Model Slicer

8-88

In this example, you evaluate a Simulink model, detect unexpected behavior, and use Model Slicer to
programmatically isolate and resolve the unexpected behavior. When you plan to reuse your API
commands and extend their use to other models, a programmatic approach is useful.

Prerequisites

Be familiar with the behavior and purpose of Model Slicer and the functionality of the Model Slicer
API. “Highlight Functional Dependencies” on page 8-2 outlines how to use Model Slicer user
interface to explore models. The slslicer, slsliceroptions, and slslicertrace function
reference pages contain the Model Slicer API command help.

Find the Area of the Model Responsible for Unexpected Behavior

The sldvSliceCruiseControlHarness test harness model contains a cruise controller subsystem
sldvSliceCruiseControl and a block, TestCases, containing a test case for this subsystem. You
first simulate the model to execute the test case. You then evaluate the behavior of the model to find
and isolate areas of the model responsible for unexpected behavior:

1 Openthe sldvSliceCruiseControlHarness test harness for the cruise control model.

open_system('sldvSliceCruiseControlHarness")

Size-Type
Shortl nc
enbl anbl sldvSliceCruiseControl
o)
cncl cncl req-m dviver_request i
dviver_request
set sat
_ resume resume status ac_status ".
. act_status
inc nc
dec dec mode -
operation_mode "
brakeP brakeP operation_mode
e ey targetSp|————»(4)
rgetop targel =peed -
gear gear target _speed —]
throtDry throtDine :
rot g
e vehSp throttle Scope
—— modeew Model
TestCases
g
J =

int32 Comnvert

h 4

——» v
expected_mode verify O

dtc dtc Assertion

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Note The Assertion block is set to Stop simulation when assertion fails when the actual
operation mode is not the same as the expected operation mode.

The TestCases block contains several test inputs for sldvSliceCruiseControl.

all
In the TestCases Signal Builder click the Run all button ™ to run all of the included test cases.
You receive an error during the ResumeWO test case.

’T Error Dialog E = @

Simulation failed in cvsim due to:
6 Assertion detected in "sldvSliceCruiseControl Hamess/ Assertion” at time 27

Simulation failed

The Assertion block halted simulation at 27 seconds, because the actual operation mode was not
the same as the expected operation mode. Click OK to close this error message.

In the sldvSliceCruiseControlHarness model, double-click the Assertion block, clear Enable
assertion, and click OK.
set _param('sldvSliceCruiseControlHarness/Assertion', 'Enabled', 'off")

Set the Active Group of the TestCases Signal Builder block to the test case containing the
error and run the simulation again.

signalbuilder('sldvSliceCruiseControlHarness/TestCases', 'ACTIVEGROUP', 12)
sim('sldvSliceCruiseControlHarness")

The Scope block in the model contains three signals:

* operation_mode - displays the actual operation mode of the subsystem.

* expected mode - displays the expected operation mode of the subsystem that the test case
provides.

* verify - displays a Boolean value comparing the operation mode and the expected mode.

8-89

8 Model Slicer

8-90

-

| Scope E@

File Tools View Simulation Help o

@-BOP® =-&-E- | FSH-

Ready T=45.000

The scope shows a disparity between the expected operation mode and the actual operation
mode beginning at time 27. Now that you know the outport displaying the unexpected behavior
and the time window containing the unexpected behavior, use Model Slicer to isolate and analyze
the unexpected behavior.

Isolate the Area of the Model Responsible for Unexpected Behavior

1

Create a Model Slicer configuration object for the model using slslicer. The Command
Window displays the slice properties for this Model Slicer configuration.

obj

slslicer('sldvSliceCruiseControlHarness')
obj =
SLSlicer with properties:

Configuration: [1x1 SLSlicerAPI.SLSlicerConfig]
ActiveConfig: 1

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

DisplayedConfig:
StorageOptions:
AnalysisOptions:
SliceOptions:
InlineOptions:

Contents of active

Name:
Description:
Color:
SignalPropagation:
StartingPoint:
ExclusionPoint:
Constraint:
SliceComponent:
UseTimeWindow:
CoverageFile:
UseDeadlLogic:
DeadLogicFile:

[]

[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]

configuration:
‘untitled’

[0 1 1]
‘upstream’
[1x0 struct]
[1x0 struct]
[1x0 struct]
[1x0 struct]
0

0

2 Activate the slice highlighting mode of Model Slicer to compile the model and prepare it for

dependency analysis.

activate(obj)

3 Add the operation mode outport block as a starting point and highlight it.

addStartingPoint(obj,"
highlight(obj)

sldvSliceCruiseControlHarness/operation _mode"')

The area of the model upstream of the starting point and active during simulation is highlighted.

8-91

8 Model Slicer

4 Simulate the model within a restricted simulation time window (maximum 30 seconds) to
highlight only the area of the model upstream of the starting point and active during the time
window of interest.

simulate(obj,0,30)

Only the portion of the model upstream of the starting point and active during the simulation
time window is highlighted.

5 You can further narrow the simulation time window by changing the start time to 20 seconds.

setTimeWindow(obj,20,30)

8-92

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

Size-Type

ResumeWo [_
anbl ——M= i1

cncl plri2

sat plri3.

rasume —————— = lid

inc plri5:

/\ dec plrkG
l brakaP Pl
key plriB.

gear plrkS

1 throdDrv lighilt
wehSp hii 1

mode_axp b

TestCases

h

l-l;nbl sldvSliceCruiseControl
I reqDrv D 1
cne reqDrv eqDrv
set
status 2
resume status -
inc status
dec operation_modep—————» 3
Pe operation mnde:‘.:)
brakeP —operation_mode
key tar
getSp
gesar targstSp targetSp
throtDr
throtCC 5
vehSp throtCC e Scope
-] throtCC
expected_mode verify Q

6 Create a sliced model sldvSliceCruiseControlHarness sliced containing only the area of

interest.

slicedModel = slice(obj, 'sldvSliceCruiseControlHarness sliced')
open_system('sldvSliceCruiseControlHarness sliced"')

Shortinc

anbl

cncl

13

sat

reasume
inc
dec

| brakaP

|

TestCases

key
gear
throtDiry

vehSp

TYvITIUYLY

mode_axp

Size-Type

b

@
o
2
2

0

status

operation_mode 3

operation_mode:
operation_mode

l

-

c

targetSp

¢

throtCC

Madel

The sliced model sldvSliceCruiseControlHarness sliced now contains a simplified version of
the source model sldvSliceCruiseControlHarness. The simplified standalone model contains

8-93

8 Model Slicer

only those parts of the model that are upstream of the specified starting point and active during the
time window of interest.

Investigate the Sliced Model and Debug the Source Model

You can now debug the unexpected behavior in the simplified standalone model and then apply
changes to the source model.

1 To enable editing the model again, terminate the Model Slicer mode.

terminate(obj)
2 Navigate to the area of the sliced model that contains the unexpected behavior.

open_system('sldvSliceCruiseControlHarness sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled")

opMode Disable I—r
D >

maode_prav

opMode Enable |—>

false T
> frue T —I-1 e 1)
YESNO

AND » -

71 |

Init=false

The AND Logical Operator block in this subsystem has a truncated true constant attached to its
second input port. This true constant indicates that the second input port is always t rue during
the restricted time window for this sliced model, causing the cruise control system not to enter
the "has canceled" state.

3 Navigate to the equivalent AND Logical Operator block in the source system by using
slslicertrace to view the blocks connected to the second input port.

h = slslicertrace('SOURCE', ...
'sldvSliceCruiseControlHarness sliced/Model/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOpl"')

hilite system(h)

8-94

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

opMode Disable I—r
D >

maode_prav

opMode Enable |—>

false T
- true T —I-1 1)
YESNO
h-.l [1
|npr-.«1nde.Disahle |—> _ L, it il P—F
Ly 77 <N Jb o E
Init=opMode.D : R L
nit=opMode.Dis
opMode Enable
| ok F' |,
71 |
Init=false

The OR Logical Operator block in this subsystem is always true in the current configuration.
Changing the OR Logical Operator block to an AND Logical Operator block rectifies this error.

4 Before making edits, create new copies of the cruise control model and the test harness model.

save system('sldvSliceCruiseControl', 'sldvSliceCruiseControl fixed")
save_system('sldvSliceCruiseControlHarness', 'sldvSliceCruiseControlHarness fixed')

5 Update the model reference in the test harness to refer to the newly saved model.
set param('sldvSliceCruiseControlHarness fixed/Model"',...
'ModelNameDialog', 'sldvSliceCruiseControl fixed.slx')

6 Use the block path of the erroneous Logical Operator block to fix the error.

set param('sldvSliceCruiseControl fixed/CruiseControlMode/opMode/resumeCondition/hasCanceled/LogicOp2',..
'LogicOp', 'AND")

8-95

8 Model Slicer

opMode Disable I—r
D >

maode_prav

opMode Enable |—>

B
o

frue

h 4
L || &
b
vy ¥
po
,--"""'HJ'
b4
J

Y

\ yesno
|

AMD

¥
Y

| opMode Disable |—>

Ly 71 > j
AND

it=onl ode '
|nrt—3r3|-“~-D5| opMode.Enable |—>

.
o

¥

71 |

Init=false
7 Simulate the test harness for 45 seconds with the fixed model to confirm the corrected behavior.
sim('sldvSliceCruiseControlHarness fixed')
ans =
Simulink.SimulationOutput:
tout: [4501x1 double]

SimulationMetadata: [1x1 Simulink.SimulationMetadata]
ErrorMessage: [0x0 char]

8-96

Programmatically Resolve Unexpected Behavior in a Model with Model Slicer

-

| Scope E@
File Tools View Simulation Help o
@- 0P ® = Q- FA-

operation mode

Ready T=45.000

The scope now shows that the expected operation mode is the same as the actual operation mode.

Clean Up

To complete the demo, save and close all models and remove the Model Slicer configuration object.

save_system('sldvSliceCruiseControl fixed")
save_system('sldvSliceCruiseControlHarness fixed")
close system('sldvSliceCruiseControl fixed')

close system('sldvSliceCruiseControlHarness fixed')
close system('sldvSliceCruiseControlHarness sliced')
clear obj

See Also
slslicer|slsliceroptions |slslicertrace

8-97

8 Model Slicer

More About
. “Highlight Functional Dependencies” on page 8-2

8-98

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Refine Highlighted Model Slice by Using Model Slicer Data
Inspector

Using the Model Slicer Data Inspector, you can inspect logged signals and refine the highlighted
model slice. To refine the highlighted model slice, select the time window in the graphical plot by
using data cursors.

In the Model Slicer Data Inspector, you can:
* View signals — Inspect logged signal data after model simulation. See “Inspect Simulation Data”
(Simulink).

* Select simulation time window — Define simulation time window by using data cursors in the
graphical plot or by defining the Start and Stop time in the Inspector.

* Highlight — Compute a slice for the defined simulation time window. See “Highlight Functional
Dependencies” on page 8-2.

L3

]

Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector

This example shows how to investigate and refine the highlighted model slice by using the Model
Slicer Data Inspector.

In the fault-tolerant fuel control system, the control logic controls the fueling mode of the engine.
In this example, you slice the fuel rate control referenced model. Then, investigate the effect of
fuel rate ratio onthe Fueling mode of the engine. For more information, see “Modeling a
Fault-Tolerant Fuel Control System” (Simulink).

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel rate control model, and select Apps > Model
Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo fuelsys');

8-99

8 Model Slicer

Fault-Tolerant Fuel Control System

throttle engine_gas_dynamics
»
command " —q|engine speed 02 _aut
thrattle_sw -t} » E8E N radis))
_ throttle
Throttle Angle —
Fault Switch Throtile_Angle_Selecior [bar)
e throttle angle MAP F—
- — 1059 {deg) (bar)
engine_speed -
Engine Speed speed_ sw » I > fuel_rate_contr
_ spaed (1)
Engine Speed — 'g's" fuel airffuel ratio
L — 195 1] ror
Fault Switch Engine_Speed_Selector iais) {o's) n
Convert g cansorsfuel_rate f—{ Convert
ey fual
o g's)
ego_sw > I > To Flant L
g0
EGD Fault Switch 4 air_fuel_ratic
] fuel_rate_control -
02 Voltage_Selector fusl
4
map_sw »H > @
- mag
MAP Fault Switch >

MAP_Selector

[=H

To Controller

Copyright 19%0-2017 The MathWoarks, Inc.

To select the starting point, open the fuel rate control model, and add the fuel-rate port and
the fuel mode output signal as the starting point. To add a port or a signal as a starting point, right-
click the port or signal, and select Model Slicer > Add as Starting Point.

Step 2: Log input and output signals

a. In the Model Slice Manager dialog box, select the Simulation time window and Run simulation.
b. In the Record simulation time window, for the Stop time, type 20.
c. Select the Log inputs and outputs of the starting points.

d. Click OK.

8-100

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Maodel Slice Manager: sldvSlicerderno_fuelsys >
b Slice configuration list i
Mame: |unfitled !

Description:

Signal propagation: ¢ |Upstream i | Record sirnulation time window: sldvSlicerdemo_fuelsys x
Slice component) i i) i)
oy Please specify stop time of the simulation time window and
Bl hebe NI press OK to start simulation. The model is in editable

Starting Points [clear all] highlight mode now.

B LP fuel rate
T control_logic:3

Stop time: |20 |
Log inputs and outputs of the starting points
Save As Ifuelsvslsldvﬂlicerdema_fueIsy&l.slslicex | | Change |

[ok | cancel |

* Simulation time window
Run simulation

Use existing simulation data

k Refine Dead Logic

Export to Web Generate Slice

Slicer Active

8-101

8 Model Slicer

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

8-102

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

b Slice configuration list

Madel Slice Manager: sldvSlicerdermno_fuelsys

8 @

Name: | untitled

|

Description:

Sigmal propagation: #= |upstream

Slice component
L} fuel_rate_control

Starting Points [clear all
B LPfuel rate

T control_logic:3

¥ Simulation time window (Enabled)
Simulation data:

Clear

e

sldvSlicerdemo_fuelsys.slslicex

0 to 20 seconds

Time window

Start (0

Actual simulation time: 0 to 20 seconds

b Refine Dead Logic

Slicer Active

| Stop |20

Highlight

Inspect Signals

Export to Web| | Generate Slice

The logged input and output signals appear in the Model Slicer Data Inspector. When you open the
Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data Inspector session as
MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by specifying
the Start and Stop time in the navigation pane. To highlight the model for the defined simulation

time window, Click Highlight.

8-103

8 Model Slicer

To investigate the Fueling mode, open the control logic Stateflow™ chart, available in the
fuel rate control referenced model. Select the time window for 13-15 seconds and click
Highlight. For the defined simulation time window, the Low Emissions fueling mode is active and

highlighted.
MODEL SLICER DATA INSPECTOR
St 13 I/ gt |] miotarsica
Stap 15
TIME WINDOW TRACE MANEGER =
k e
- uitiled : $hdv SECerdemo_fuslsys W con¥ol_logicd W fusl_cale!
conol_logic3 .
o luel_calci — Y f—
\.
I
5 I
() |
L N
Name pondrol_logic3] s St -
1 i - -
Line — o8 \.L-' £ "‘-‘.___ bl
Units b i (Running M me \I N
\ £ - les_iLspend
- sid FusiMades |
Dwata Type shd_Fusinades o ‘\ Low_Emissions Rich Misture x
3 h 1 . - on. WAt k o
Sampie Time 0.0 . 4 fuel_mode = LOW, T fusl_made = RICH
Model sidvSiicerdema '
P ' :
Block Name coniol_logic o %] {02402 _normal)]
Block Path shdvSlicardems N
ik 2 h
Port 3 3 [row K ([E
Demensions) L [n(Fad.Onej)
’ : : : : 8 il 20] 20 150 RAR
¥ 1
|- £
[Fad hona]
¥ A4 " ; [
B %
A ”

Select the data cursor for the time window 6-7.5 seconds, with @ fuel cal:1. Click Highlight. In
the control logic model, the Fuel Disabled state is highlighted. The engine is in Shutdown
mode.

8-104

Refine Highlighted Model Slice by Using Model Slicer Data Inspector

Starl & ﬂ_}ﬁ Highhght m Model Sicer
Stop | 7.5
— —— '|..__ — i ___.-l -
L TIME WIHDOW [TRAcE MANAGER L -
L] o=) X A
1] e,k S W *‘ E: ﬁ
« untithed : sidv Slicerdemo_fuelsys W control_logic:3 M fuel_calc1
& == DISABLED
~ fuel_calc:1 R — 21
1.8
1.5
1.2 "=
Name control_logic:3 {
Line P—— 0% v max_speed] é
'i\ Overspeed i
Units \ i
I i
Data Type sld_FuelModes - e i
v % i
Sample Time 0.01 & (in{Speed normal) &] :
\ es_ispead < (max_spaed - hys)] E
Model sldvSlicerdemo o | nauisiyg ! i
0.3 Y i)2 i
Block Name control_logic s H
A] i
Block Path sldvSlicerdemo s B i
= . ¥ + L i
Dimensions] o : ¥ m (Fail Multh, i
B i
1 2
e e e e e
See Also

“Highlight Functional Dependencies” on page 8-2 | “Refine Highlighted Model” on page 8-12

8-105

8 Model Slicer

Debug Slice Simulation by Using Fast Restart Mode

8-106

Perform multiple slicer simulations and streamline model debugging workflows by using Model Slicer
in fast restart mode. For more information, see “Get Started with Fast Restart” (Simulink).

If you enable fast restart mode, you can:

Perform multiple slicer simulations efficiently with different inputs, without recompiling the
model.

Debug a simulation by stepping through the major time steps of a simulation and inspecting how a
slice changes. For more information, see “Use Simulation Stepper” (Simulink).

Simulate and Debug a Test Case in a Model Slice

This example shows how the fast restart mode performs slicer simulations with different test case
inputs, without recompiling the model. You can simulate a sliced harness model with a test case input
and highlight the dependency analysis in the model.

Analyze the highlighted slice by stepping through the time steps. You use the simulation stepper to
analyze how the slice changes at each time step.

1

Open the sldvdemo cruise control model.

open_system('sldvdemo cruise control');
Set sldvoptions parameters and analyze the model by using the specified options.

opts = sldvoptions;

opts.Mode = 'TestGeneration'; % Perform test-generation analysis
opts.ModelCoverageObjectives = 'MCDC'; % Specify type of model coverage
opts.SaveHarnessModel = 'on'; % Save harness as model file

[status, files] = sldvrun('sldvdemo cruise control', opts);

After the analysis, the software opens a harness model sldvdemo cruise control harness
and saves it in the default location <current folder>\sldv output

\sldvdemo cruise control\sldvdemo cruise control harness.slx. For more
information, see “Simulink Design Verifier Harness Models” (Simulink Design Verifier).

Debug Slice Simulation by Using Fast Restart Mode

i -=-8 <«

sldvdemo_cruise_control_hamess

*

N - 1 R o R

=

¥

R G-EH-mwd® b

i
@ - » A

A,
4
E
L]

sld'.rdemn_cruise_l:onl:rul_harness 4

throt

target

— ()
throt

| [

Size-Type
Test Case 4 anable anabila
brake brake
/\ set I cat
inc ine
dec dec
[
spaed Bl =ed
Inputs
ll-
DoC
Text

Test Case Explanation

Test Unit {copied from sldvdemo_cruise_contral)

5

To enable the fast restart mode, click Enable Fast Restart button

On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

Model Slicer compiles the model.

Optionally, you can enable fast restart after opening the Model Slice Manager. Select Simulation

time window and click the run simulation button . To enable fast restart, in the Record

simulation time window, click the here link.

Record simulation time window: sldvdemo_cruise_contral_.., X

Flease specify stop time of the simulation time window and
press OK to start simulation.

The model is in editable highlight mode now. Consider turning
on Fast Restart for simulation based workflows. Click here to
enable Fast Restart.

Stop time: |0.07 |

[] Log inputs and outputs of the starting points

Save As |5Id\rdemu_cruis.e_contml_harne55.5l5licex| Change

Cancel

To add Starting Points, in the Model Slice Manager, click Add all outports..

8-107

8 Model Slicer

The throt and target outports are added as the Starting Points.
6 You can simulate a test case and analyze the highlighted dependencies in the slice.

a In the Signal Builder block, select Test Case 4.

To simulate the test case, click Start simulation button,

[
Optionally, you can simulate the model by using the Run button 2 in the Simulink editor.
You can also simulate by using the Simulation time window in the Model Slice Manager.

The slice shows the highlighted dependencies for the Test Case 4 inputs.

8-108

Debug Slice Simulation by Using Fast Restart Mode

Active Group: | Test Case 4 v|| @ [a]*]

#enahle—‘ & & & &]
n 1 1 1 1 1 i i
™
ﬁl _hrake 1 1 1 1 i i
1 P ——————————————
0.5k |
oL set |
1
0.5k
oL_inc .
1 —
0.5+ de:]
0 _ |
100f
m -
u S Fmd i i i i d
0 0.01 0.02 003 004 0.05 0.06 007
Time (sec)
< [Pa| Test Unit (copied from sidvdemo_cruise_control) # [Pa|Controlier # -

8-109

8 Model Slicer

(D8] [&][=]

= T L)

©

=

W

=

o

4
= g
= g
= g

_‘:Jl—_brake .

1
05 I i
oL_sst]
i
osf
aL_inc | |
q : :
0.5[:_.-|¢ 1 1 1
al_dec |
100
D Side i i i i I
0 0.01 002 003 004 005 0.06
Time (sec)

0.07

<¢ [Pa| Test Unit (copied from sldvdemo_cruise_control) b [P Controller b

You can simulate a slice for different test case inputs and analyze the dependency analysis.

7 Debug a slicer simulation by using a simulation stepper. For more information see, “Simulation

Stepper Access” (Simulink).

8-110

Debug Slice Simulation by Using Fast Restart Mode

a To debug the simulation for the test case, in the Simulink Editor for the
sldvdemo cruise control harness model, click Step Forward button. You can view
the signal values and the highlighted slice at each time step. For more information, see
“Simulation Stepping Options” (Simulink). The signal values and the dependencies at
T=0.010 appears.

H-o-Ales B E-od4qOP® » 0|
Controller

® | <« Pa| Test Unit (copied from sldvdemo_cruise_control) M [Ba| Controlier » -
€3]

=

3]

(=]

[]

Paused | FixEdStepDiscret&| I

Paused 80% T=0.010*

b To debug the slice at T=0.030, step forward and view the signal values and the highlighted
slice.

8-111

8 Model Slicer

H-o-He> @ BE@®E-90dOP® »©|E-
Controller

® | < Pa| Test Unit (copied from sldvdemo_cruise_control) M [Pa| Controlier # -
£

=

=

[

L]

FixedStepDiscrete

Paused 80% T=0.030*

8 To complete the simulation stepping, click the Run button.
See Also

More About

. “Highlight Functional Dependencies” on page 8-2
. “Simulation Stepper” (Simulink)
. “Get Started with Fast Restart” (Simulink)

8-112

Isolate Referenced Model for Functional Testing

Isolate Referenced Model for Functional Testing

To functionally test a referenced model, you can create a slice of a referenced model treating it as an
open-loop model. You can isolate the simplified open-loop referenced model with the inputs generated
by simulating the close-loop system.

This example shows how to slice the referenced model controller of a fault-tolerant fuel control
system for functional testing. To create a simplified open-loop referenced model for debugging and
refinement, you generate a slice of the referenced controller.

Step 1: Open the Model

The fault-tolerant fuel control system model contains a referenced model controller
fuel rate control.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

(i

throttle
command

engine_gas_dynamics

¥ engine speed 02_out
Nirads)]

v

thrattle_sw

throttle
Throttle Angle

|
1
-

engine_speed

Engine Speed

Fault Switch Throtile_Angle_Selecior {bar)
—— M throtile angle MAP F——
— 19591 (deg) (bar)
spead_sw | » fuel_rate_contr

— ! spaad (1)
Engine Speed — Py fuel airffuel ratio

" S 195)] ri
Fault Switch Engine_Speed_Selector la's) {g.s:‘ 11

Convert | zansorsfuel_rate f—{ Gonvert
(s}
i35}

fuel

T Plant

|

BGO_SW

EGC Fault Switch

|
1 ego

¥ ¥ ¥ [‘F ¥ l‘!’ h 4

air_fual_ratio

fuel_rate_control

02_\altage_Sselector fuel
mag EI

MAP_Selector

map_sw

MAP Fault Switch

L A
v

[<H

T Cantroller

‘Copyright 18%0-2017 The MathWorks, Inc.

Step 2: Slice the Referenced Model

To analyze the fuel rate control referenced model, you slice it to create a standalone open-loop
model. To open the Model Slice Manager, select Apps > Model Verification, Validation, and Test

> Model Slicer, or right-click the fuel rate control model and select Model Slicer > Slice
component. When you open the Model Slice Manager, the Model Slicer compiles the model. You then
configure the model slice properties.

Note: The simulation mode of the sldvSlicerdemo fuelsys model is Accelerator mode. When
you slice the referenced model, the software configures the simulation mode to Normal mode and
sets it back to its original simulation mode while exiting the Model Slicer.

8-113

8 Model Slicer

Step 3: Select Starting Point

Open the fuel rate control model, right-click the fuel- rate port, and select Model Slicer >

Add as starting point. The Model Slicer highlights the upstream constructs that affect the
fuel rate.

Convert

—*lsensorsfuel_rate

fuel_rate_ :Dnlk

(o's)

(g/s)

8-114

Convert
(a's) fuel
Z]
juslrate contol ™ = == == o L
N 00 eSS e
\
\ Fuel Rate Control Subsystem
\
\
\ 5 !{"E‘“s’ n & =b|sanm igis)
I <spaad> est_airflow [——r est_arflow
1 e @5 95} -
\ i %107 nomal
\ fuel_rate
08_o) ion Ld
\ N L —@!;‘E: I1la.ls)
\ = ey D 2 normal | - -
1 t[:j airllow_calc
] fuel_mode fuel_mode
\ control_logic
\ fuel_calc
\

Step 4: Generate Slice

a. In the Model Slice Manager dialog box, select the Simulation time window.

b. Click Run simulation.

c. For the Stop time, enter 20. Click OK.

d. Click Generate Slice. The software simulates the sliced referenced model by using the inputs of
the close-loop sldvSlicerdemo fuelsys model.

Isolate Referenced Model for Functional Testing

b Slice configuration list

Maodel Slice Manager: sldvSlicerderno_fuelsys

Name: |untitled

Description:

Slice component
L fuel rate control

Starting Points [clear all
E LPfuel rate

¥ Simulation time window

Run simulation

b Refine Dead Logic

| Slicer Active

Signal propagation: #= |upstream

-

Record simulation time window: sldvSlicerdemo_fuelsys

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable highlight

maode now.

Stop time: |20 |
Log inputs and outputs of the starting points

Save As }mu_fuelsvs‘usldvslicerdemn_fueIsya.alslicex| Change |

| Gancel

Use existing simulation data

Export to Web Generate Slice

For the sliced model, in the Signal Builder window, one test case is displayed that represents the
signals input to the referenced model for simulation time 0-20 seconds.

8-115

8 Model Slicer

Size-Type
Test Case 1 S — deg)
rad/s)
EENE0rE Epeed B
//‘H‘H V) T e 5ENEOTS fuel_rate 5917_’@
SENEOrE.eg0 —= o} fuel_rate
l EENS0IE. Map !
Inputs Test Unit
4 Signal Builder (sldvSlicerdemo_fuelsys_slice10/Inputs) - O b2
File Edit Group Signal Axes Help k)
GH| tR@d oo | ~TLETREE > 0 o=+ 8=
Active Group: | | Test Caze 1 v @ = =

Hame: |sensors throttle

1 Lo

Index:

Click to select, Shift+click to add

Time (sec)

1 sensors.throttle
50
0
301
sensors.speed
300
299 1 1 1 I 1 1 1 1 1 |
1
Sensors.ego
0.5
0k i 1 T T I | | 1 1
1 —
Sensors.map
0.5
1 1 1 1 | | 1 1]
0 2 4 6 8 10 12 14 16 18 20

H sensors.throttle -~

& sensors.spead
= sensors.ego
B sensors.map

| sensors.throttie (#1) [YMin YMax]

8-116

Analyze the Dead Logic

Analyze the Dead Logic

This example shows how to refine the model for dead logic. The sldvSlicerdemo dead logic
model consists of dead logic paths that you refine for dependency analysis.

1. Open the sldvSlicerdemo dead logic model.

2. On the Apps tab, under Model Verification, Validation, and Test gallery, click Model Slicer.

open_system('sldvSlicerdemo dead logic');

Simulink Design Verifier
Cruise Control Test Generation

L1 3 # enable
enable
L2 3} ¥ brake throt e 1)
brake throt
1 | st
sel [0 100]
: Actual ed .
speed ual spe
(3D »inc targetf—— (2)
inc target
L4 } | dec
dec
Controller

This example shows how to refine the model for dead logic. The model consists of a Controller
subsystem that has a set value equal to 1. Dead logic refinement analyszis identifies the dead logic
in the model. The inactive elements are removed from the slice.

Toggle Speed
d EII‘:-GIH Constraint v;“:ﬂfi::
el) (double-click) el)

Toggle Constraint

Copyright 2006-2018 The MathWarks, Inc.

Open the Controller subsystem and add the outport throt as the starting point.

8-117

8 Model Slicer

The Model Slicer highlights the upstream dependency of the throt outport.

2. In the Model Slice Manager, select Refine Dead Logic.
3. Click Get Dead Logic Data.

8-118

Analyze the Dead Logic

Madel Slice Manager: sldvSlicerdernc_dead_legic et

b Slice configuration list cﬁ-?j-_ @ @

MName: | untitled | __l

Description:

Sigmal propagation: #= |upstream 57

Starting Points [clear all]
B LF throt

b Simulation time window
¥ Refine Dead Logic
Get Dead Logic Data

Export to Web | | Generate Slice

Slicer Active

4. Specify the Analysis time and run the analysis. You can import existing dead logic results from the
sldvData file or load existing .slslicex data for analysis. For more information, see “Refine
Highlighted Model by Using Existing .slslicex or Dead Logic Results” on page 8-63.

8-119

8 Model Slicer

8-120

Refine Dead Logic

Generate results

Run analysis

Import SLDV data

Load results

>
Analysis time: |300 Ir@|
Browss for SLDV data file [E|
Save As |‘\5Idv5Iicerdemn_dead_lagic.ﬁlslicex | | Change |
Browse for existing dead logic results _'E_IT_l
| Cancel |

Analyze the Dead Logic

As the set input is equal to true, the False input to switch is removed for dependency analysis.
Similarly, the output of block OR is always true and removed from the model slice.

8-121

8 Model Slicer

Investigate Highlighted Model Slice by Using Model Slicer Data
Inspector

This example shows how to investigate and refine the highlighted model slice by using the Model
Slicer Data Inspector.

In the fault-tolerant fuel control system, the control logic controls the fueling mode of the engine.
In this example, you slice the fuel rate_ control referenced model. Then, investigate the effect of
fuel rate ratio onthe Fueling mode of the engine. For more information, see “Modeling a
Fault-Tolerant Fuel Control System” (Simulink).

Step 1: Start the Model Slice Manager

To start the Model Slice Manager, open the fuel rate control model, and select Apps > Model
Verification, Validation, and Test > Model Slicer.

open_system('sldvSlicerdemo fuelsys');

Fault-Tolerant Fuel Control System

(i

throttle
command

engine_gas_dynamics

¥ engine speed 02_out
M rad's) v

v

thraftle_sw

Throttle Angle
Fault Switch Th

|
! throttle
-

rofile_Angle_Selecior [bar)
P throtile angle MAP F——
— 19=N (deg) {bar)

engine_speed

Engine Speed

8-122

fuel_rate_contr

v

Speed_sw

Engine Speed ot fuel airfiuel ratio f—
o 2]
Fault Switch Engine_Spasd_Selsctor ia's) {g's) (1)

Convert | sansnrsfusl_rats — Gonvert
Bgo_SW

w

=1
@
i
a

=

s} fuel
T\ To Plant

1
EGO Fault Switch — air_fuel_ratio
o fuel_rate_control -

02_Voltage_Selector el

v

11 l ¥y ¥ l Yy
i

map_sw

MAP Fault Switch

map

¥ ¥y
Y

MAP_Selector

[<H

T Cantroller

Copyright 19%0-2017 The MathWarks, Inc.

To select the starting point, open the fuel rate control model, and add the fuel - rate port and
the fuel mode output signal as the starting point. To add a port or a signal as a starting point, right-
click the port or signal, and select Model Slicer > Add as Starting Point.

Step 2: Log input and output signals
a. In the Model Slice Manager dialog box, select the Simulation time window and Run simulation.
b. In the Record simulation time window, for the Stop time, type 20.

c. Select the Log inputs and outputs of the starting points.

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

d. Click OK.

b Slice configuration list

Model Slice Manager: sldvSlicerdermno_fuelsy

MName: |untitled

Description:

Signal propagation: = |upstream

Slice component
P fuel rate control

Starting Points [clear all
B ¥ fyel_rate

T control_logic:3

¥ Simulation time window
Run simulation
Use existing simulation data
b Refine Dead Logic
Export to Web

Slicer Active

oy

Record simulation time window: sldvSlicerdemo_fuelsys >

Please specify stop time of the simulation time window and
press OK to start simulation. The model is in editable

highlight mode now.

Stop time: |20 |
Log inputs and outputs of the starting points
Save As lfuelsvslsldvﬂlicerdema_ﬁ,leIs-,fs?_.slslicex | | Change

[ok | cancel |

Generate Slice

8-123

8 Model Slicer

Step 3: Inspect signals

To open the Model Slicer Data Inspector, click Inspect Signals.

8-124

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

Madel Slice Manager: sldvSlicerdermno_fuelsys

b Slice configuration list

Name: | untitled

|

Description:

Sigmal propagation: #= |upstream 57

Slice component
L} fuel_rate_control

Starting Points [clear all
B LPfuel rate

T control_logic:3

¥ Simulation time window (Enabled)
Simulation data:

Clear

sldvSlicerdemo_fuelsys.slslicex

0 to 20 seconds

Time window

Start |0 | Stop |20

Highlight

Actual simulation time: 0 to 20 seconds

b Refine Dead Logic

Slicer Active

Inspect Signals

Export to Web| | Generate Slice

The logged input and output signals appear in the Model Slicer Data Inspector. When you open the
Model Slicer Data Inspector, Model Slicer saves the existing Simulation Data Inspector session as

MLDATX-file in the current working directory.

You can select the time window by dragging the data cursors to a specific location or by specifying
the Start and Stop time in the navigation pane. To highlight the model for the defined simulation

time window, Click Highlight.

8-125

8 Model Slicer

To investigate the Fueling mode, open the control logic Stateflow™ chart, available in the
fuel rate control referenced model. Select the time window for 13-15 seconds and click
Highlight. For the defined simulation time window, the Low Emissions fueling mode is active and

highlighted.
MODEL SLICER DATA INSPECTOR
St 13 I/ gt |] miotarsica
Stap 15
TIME WINDOW TRACE MANEGER =
k e
- uitiled : $hdv SECerdemo_fuslsys W con¥ol_logicd W fusl_cale!
conol_logic3 .
o luel_calci — Y f—
\.
I
5 I
() |
L N
Name pondrol_logic3] s St -
1 i - -
Line — o8 \.L-' £ "‘-‘.___ bl
Units b i (Running M me \I N
\ £ - les_iLspend
- sid FusiMades |
Dwata Type shd_Fusinades o ‘\ Low_Emissions Rich Misture x
3 h 1 . - on. WAt k o
Sampie Time 0.0 . 4 fuel_mode = LOW, T fusl_made = RICH
Model sidvSiicerdema '
P ' :
Block Name coniol_logic o %] {02402 _normal)]
Block Path shdvSlicardems N
ik 2 h
Port 3 3 [row K ([E
Demensions) L [n(Fad.Onej)
’ : : : : 8 il 20] 20 150 RAR
¥ 1
|- £
[Fad hona]
¥ A4 " ; [
B %
A ”

Select the data cursor for the time window 6-7.5 seconds, with @ fuel cal:1. Click Highlight. In
the control logic model, the Fuel Disabled state is highlighted. The engine is in Shutdown
mode.

8-126

Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

Filter Signals |
QM LiNE ol == QQE.IQ .,:_k_]#
w untitied : sidv Slicerdemo_fuelsys W control_logic:3 W fuel_calc1

[oisagLeD |

7' fuel_caic:1 | —

PROPERTIES ALLES

Name control_logic:3 |
Line ——

Units

Data Type sId_FuelModes
SampleTime 001

Model sldvSlicerdemo. .
BlockName control_logic

Block Path sldvSiicerdemo...
Port 3

Dimensions : 1

8-127

	Get Started
	Simulink Check Product Description
	Key Features

	Assess and Verify Model Quality
	Detect and Fix Model Advisor Check Violations
	Detect and Fix Model Advisor Check Violations While You Edit
	Detect and Fix Model Advisor Check Violations Interactively

	Collect Model Metric Data by Using the Metrics Dashboard
	Analyze Metric Data
	Explore Metric Data
	Refactor Model Based on Metric Data

	Detect and Fix Compliance Issues
	Explore Compliance Results in the Dashboard
	Update Model to Fix Compliance Issues
	Rerun Model Metrics

	Refactor Models to Improve Component Reuse
	Identify and Replace Clones with Links to Library Blocks
	Explore Other Options

	Simplify Model for Targeted Analysis of Complex Models using Model Slicer Tool

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012

	Checking Systems Interactively
	Check Model Compliance by Using the Model Advisor
	Model Advisor Overview
	Run Model Advisor Checks and Review Results
	Check Your Model by Using Edit Time Checks
	View and Customize the Edit-Time Checks in a Model Advisor Configuration

	Exclude Blocks From the Model Advisor Check Analysis
	Model Advisor Exclusion Overview
	Save Model Advisor Exclusions in a Model File
	Save Model Advisor Exclusions in Exclusion File
	Create Model Advisor Exclusions
	Review Model Advisor Exclusions
	Manage Exclusions
	Exclude Blocks from Edit Time Checking
	Limit Model Checks by Excluding Gain and Outport Blocks

	Generate Model Advisor Reports
	Generate Results Report When Executing Model Advisor Checks
	Generate Results Report After Executing Model Advisor Checks
	Modify Template for Model Advisor Check Results Report

	Transform Model to Variant System
	Example Model
	Perform Variant Transform on Example Model
	Model Transformation Limitations

	Enable Component Reuse by Using Clone Detection
	Exact Clones and Similar Clones
	Identify Exact and Similar Clones
	Replace Clones
	Identifying and Replacing Clones in Model Libraries
	Check the Equivalency of the Model

	Improve Model Readability by Eliminating Local Data Store Blocks
	Example Model
	Replace Data Store Blocks
	Limitations

	Improve Efficiency of Simulation by Optimizing Prelookup Operation of Lookup Table Blocks
	Example Model
	Merge Prelookup Operation
	Conditions and Limitations

	Model Checks for DO-178C/DO-331 Standard Compliance
	Model Checks for High Integrity Systems Modeling

	Model Checks for DO-254 Standard Compliance
	Model Checks for High Integrity Systems Modeling
	HDL Code Advisor Checks

	Model Checks for MAB and JMAAB Compliance
	Accessing the MAB and JMAAB Model Advisor Checks
	Modeling Guidelines and Model Advisor Checks for MAB and JMAAB

	Model Checks for High Integrity Systems Modeling
	High Integrity Systems Modeling Checks

	Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance
	Model Checks for High Integrity Systems Modeling

	Model Checks for MISRA C:2012 Compliance
	Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961 Standards)
	Model Checks for Requirements Links

	Check Systems Programmatically
	Checking Systems Programmatically
	Create a Function for Checking Multiple Systems
	Create a Function for Checking Multiple Systems in Parallel
	Archive and View Results
	Archive Results
	View Results in Command Window
	View Results in Model Advisor Command-Line Summary Report
	View Results in Model Advisor GUI
	View Model Advisor Report

	Archive and View Model Advisor Run Results

	Model Metrics
	Collect and Explore Metric Data by Using the Metrics Dashboard
	Metrics Dashboard Widgets
	Size
	Modeling Guideline Compliance
	Architecture
	Metric Thresholds
	Dashboard Limitations

	Collect Model Metrics Using the Model Advisor
	Create a Custom Model Metric for Nonvirtual Block Count
	Collect Model Metrics Programmatically
	Model Metric Data Aggregation
	How Model Metric Aggregation Works
	Access Aggregated Metric Data

	Identify Modeling Clones with the Metrics Dashboard
	Collect Compliance Data and Explore Results in the Model Advisor
	Collect Metric Data Programmatically and View Data Through the Metrics Dashboard
	Fix Metric Threshold Violations in a Continuous Integration Systems Workflow
	Project Setup
	GitLab Setup
	Jenkins Setup
	Continuous Integration Workflow

	Customize Metrics Dashboard Layout and Functionality
	Compare Model Complexity and Code Complexity Metrics
	Metric Threshold Values
	Comparing Code and Model Complexity Metric Results

	Create Model Advisor Checks
	Overview of the Customization File for Custom Checks
	Common Utilities for Creating Checks
	Create Pass/Fail and Informational Model Advisor Checks
	Create an sl_customization Function
	Create the Check Definition Function for a Pass/Fail Check with No Fix Action
	Create the Check Definition Function for an Informational Check
	Run the Custom Checks in the Model Advisor

	Create a Pass/Fail Model Advisor Check with Fix Action
	Create the sl_customization File
	Create the Check Definition File
	Run the Check

	Create Model Advisor Check for Model Configuration Parameters
	Create a Data File for a Configuration Parameter Check
	Create Check for Diagnostics Pane Model Configuration Parameters
	Data File for Configuration Parameter Check

	Define Model Advisor Checks for Supported or Unsupported Blocks and Parameters
	Example
	Create Block Parameter Constraints
	Create Model Advisor Checks from Constraints

	Define Startup and Post-Execution Actions Using Process Callback Functions
	Process Callback Function Arguments
	Process Callback Function
	Tips for Using the Process Callback Function in a sl_customization File

	Defining Custom Model Advisor Checks Workflow
	Create the sl_customization File and Function
	Register Custom Checks
	Create a Check Definition Function

	Define the Compile Option for Custom Model Advisor Checks
	Checks for Models That Are Not Compiled by the Model Advisor
	Checks That Require the Model to be Compiled and Simulated by the Model Advisor
	Checks That Evaluate Code Generation Readiness of the Model
	Create Custom Check to Evaluate Active and Inactive Variant Paths from a Model

	Exclude Blocks From Custom Checks

	Model Advisor Customization
	Customize the Configuration of the Model Advisor Overview
	Use the Model Advisor Configuration Editor to Customize the Model Advisor
	Overview of the Model Advisor Configuration Editor
	Open the Model Advisor Configuration Editor
	Specify a Default Configuration File
	Customize the Model Advisor Configuration
	Suppress Warning Message for Missing Checks
	Use the Model Advisor Configuration Editor to Create a Custom Model Advisor Configuration

	Programmatically Customize Tasks and Folders for the Model Advisor
	Customization File Overview
	Register Tasks and Folders
	Define Custom Tasks
	Define Custom Folders

	Programmatically Create Procedural-Based Configurations
	Create Procedural-Based Configurations

	Update the Environment to Include Your Custom Configuration
	Load and Verify a Custom Configuration
	Deploy Custom Configurations
	Create and Deploy a Model Advisor Custom Configuration

	Model Slicer
	Highlight Functional Dependencies
	Highlight Dependencies for Multiple Instance Reference Models
	Refine Highlighted Model
	Define a Simulation Time Window
	Exclude Blocks
	Exclude Inputs of a Switch Block

	Refine Dead Logic for Dependency Analysis
	Analyze the Dead Logic

	Create a Simplified Standalone Model
	Highlight Active Time Intervals by Using Activity-Based Time Slicing
	Highlighting the Active Time Intervals of a Stateflow State or Transition
	Activity-Based Time Slicing Limitations and Considerations
	Stateflow State and Transition Activity

	Simplify a Standalone Model by Inlining Content
	Workflow for Dependency Analysis
	Dependency Analysis Workflow
	Dependency Analysis Objectives

	Configure Model Highlight and Sliced Models
	Model Slice Manager
	Model Slicer Options
	Storage Options
	Refresh Highlighting Automatically
	Sliced Model Options
	Trivial Subsystems
	Inline Content Options

	Model Slicer Considerations and Limitations
	Model Compilation
	Model Highlighting and Model Editing
	Standalone Sliced Model Generation
	Sliced Model Considerations
	Port Attribute Considerations
	Simulation Time Window Considerations
	Simulation-based Sliced Model Simplifications
	Starting Points Not Supported
	Model Slicer Support Limitations for Simulink Software Features
	Model Slicer Support Limitations for Simulation Stepper
	Model Slicer Support Limitations for Simulink Blocks
	Model Slicer Support Limitations for Stateflow

	Using Model Slicer with Stateflow
	Model Slicer Highlighting Behavior for Stateflow Elements
	Using Model Slicer with Stateflow State Transition Tables
	Support Limitations for Using Model Slicer with Stateflow

	Isolating Dependencies of an Actuator Subsystem
	Choose Starting Points and Direction
	View Precedents and Generate Model Slice

	Isolate Model Components for Functional Testing
	Isolate Subsystems for Functional Testing
	Isolate Referenced Model for Functional Testing

	Refine Highlighted Model by Using Existing .slslicex or Dead Logic Results
	Simplification of Variant Systems
	Use the Variant Reducer to Simplify Variant Systems
	Use Model Slicer to Simplify Variant Systems

	Programmatically Resolve Unexpected Behavior in a Model with Model Slicer
	Programmatically Resolve Unexpected Behavior in a Model with Model Slicer
	Prerequisites
	Find the Area of the Model Responsible for Unexpected Behavior
	Isolate the Area of the Model Responsible for Unexpected Behavior
	Investigate the Sliced Model and Debug the Source Model
	Clean Up

	Refine Highlighted Model Slice by Using Model Slicer Data Inspector
	Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

	Debug Slice Simulation by Using Fast Restart Mode
	Simulate and Debug a Test Case in a Model Slice

	Isolate Referenced Model for Functional Testing
	Analyze the Dead Logic
	Investigate Highlighted Model Slice by Using Model Slicer Data Inspector

